How risky is consumption in the long-run? Benchmark estimates from a novel unbiased and efficient estimator

Ian Dew-Becker

Fuqua School of Business, Duke University

May 20, 2014

lan Dew-Becker (Duke Fuqua)

Long-run variance

May 20, 2014 1 / 23

- A large literature studies how risky the economy is
- For Epstein–Zin preferences, correct measure is *long-run standard deviation* (LRSD) of consumption growth
- Estimating the LRSD is difficult
- This paper:
 - Develops novel non-parametric estimator
 - Estimates LRSD with data back to 1834

Epstein-Zin preferences:

$$V_t = \left\{ (1-\beta) C_t^{1-\rho} + \beta E_t \left[V_{t+1}^{1-\alpha} \right]^{\frac{1-\rho}{1-\alpha}} \right\}^{\frac{1}{1-\rho}}$$

 ρ : inverse EIS α : risk aversion

э

- Price of risk (through the HJ bound) depends on volatility of the SDF
- Assume log-normal, homoskedastic consumption growth
- Standard deviation of the SDF:

$$std(M_{t+1}) \approx std\left(\rho\Delta E_{t+1}\Delta c_{t+1} + (\alpha - \rho)\Delta E_{t+1}\sum_{j=0}^{\infty}\beta^{j}\Delta c_{t+1+j}\right)$$

(exact with unit EIS)

 Δc_t : log consumption growth

Pricing kernel

Let $\beta \to 1$

$$std(M_{t+1}) \approx std\left(\rho\Delta E_{t+1}\Delta c_{t+1} + (\alpha - \rho)\underbrace{\Delta E_{t+1}\sum_{j=0}^{\infty}\Delta c_{t+1+j}}_{LRSD}\right)$$

• News about $\sum_{j=0}^{\infty} \Delta c_{t+1+j}$ is news about $c_{t+\infty}$

• Most calibrations:
$$lpha \gg
ho$$

$$std(M_{t+1}) \approx \alpha \times LRSD$$

- Implies the long-run component dominates
 - Long-run risk model is about making $\Delta E_{t+1} \sum_{j=0}^{\infty} \theta^j \Delta c_{t+1+j}$ very volatile
- LRSD is key to calibrating any model with Epstein-Zin preferences

Recent calibrations

Table 1. Recent calibrations of the long-run standard deviation of consumption growth			
(annualized)			
	Long-run SD	Moments matched	
Campbell and Cochrane (1999)	1.50	SD(dc) 1947-1995	
Gourio (2010)	2.00	SD(TFP), 1947-2010	
Barro(2006), Wachter (2010)	2.00	SD(dy) 1954-2004, international	
Tallarini (2000)	2.30	SD(dc), 1948-1993	
Mehra and Prescott (1985)	3.16	SD(dc) 1889-1978	
Boldrin, Christiano, and Fisher (2001)	3.60	Various unconditional SDs, 1964-1988	
Abel (1990)	3.60	SD(dc) 1889-1978	
Barberis, Huang, and Santos (2001)	3.80	SD(de), 1889-1985	
Bansal, Kiku, and Yaron (2008)	4.54	Annual SD(dc), autocorrelations, 1929-2008	
Drechsler and Yaron (2011)	4.83	Annual SD(dc), autocorrelations, 1929-2006	
Campanale, Castro, and Clementi (2010)	5.20	SD(dy), 1947-2005	
Bansal and Yaron (2004);			
Croce, Lettau, and Ludvigson (2010)	6.28	Annual SD(dc), autocorrelations, 1929-1998	
Croce (2010)	8.05	Annual SD(dTFP), 1947-2010	
Kaltenbrunner and Lochstoer (2010)	8.22	SD(dc), SD(dc)/SD(dy)	
Colacito and Croce (2011)	9.02	SD(dc), currency movements	

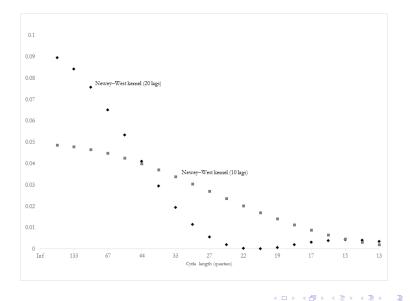
э

(日) (日) (日) (日)

- LRSD appears frequently in econometrics:
 - LRSD is the std. dev. of innovations to the Beveridge–Nelson trend (martingale component of c_t)
 - LRSD determines standard errors in OLS and GMM (e.g. Newey-West estimator)
 - Square root of spectral density at frequency zero
- Large literature on estimating LRSD

Smoothed periodogram

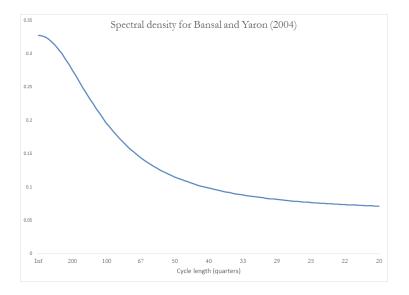
• Spectral density is $f(\omega)$


$$LRSD = \sqrt{f(0)}$$

Need to estimate f(0)

- Periodogram is the sample spectrum
 - Defined only at T-1 frequencies
 - Measured with error
- Smoothed periodogram estimator:

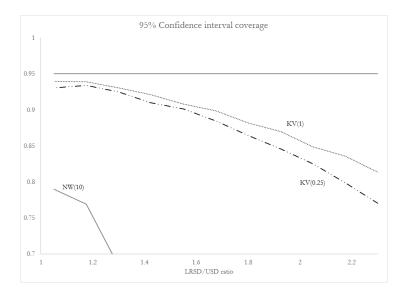
$$\hat{f}\left(0
ight) = \sum_{k=0}^{T-1} K\left(\omega_{k}
ight) p\left(\omega_{k}
ight)$$


Spectral Kernels

lan Dew-Becker (Duke Fuqua)

May 20, 2014 9 / 23

Benchmark model has strongly peaked spectrm

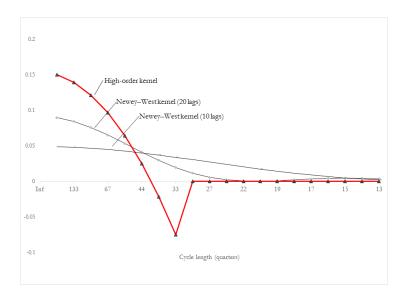


Ian Dew-Becker (Duke Fuqua)

May 20, 2014 10 / 23

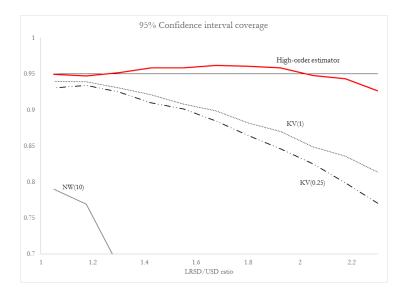
$$\begin{array}{ll} \textit{bias} &\approx& \frac{1}{2} f''\left(0\right) \int_{-\pi}^{\pi} \omega^2 K\left(\omega\right) d\omega \\ \textit{variance} &\approx& \frac{4\pi}{T} f\left(0\right)^2 \int_{-\pi}^{\pi} K\left(\omega\right)^2 d\omega \end{array}$$

- More peaked kernel:
 - Reduces bias
 - Increases variance
- Changing NW lag length moves along bias/variance tradeoff
- Can we expand the frontier? Yes.



э.

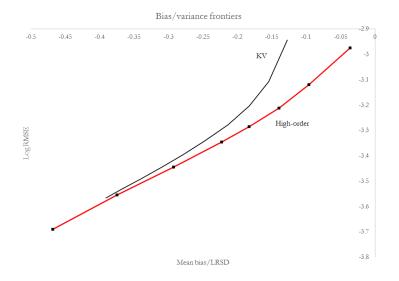
<ロ> (日) (日) (日) (日) (日)


bias
$$\approx \frac{1}{2} f''(0) \int_{-\pi}^{\pi} \omega^2 K(\omega) d\omega$$

variance $\approx \frac{4\pi}{T} f(0)^2 \int_{-\pi}^{\pi} K(\omega)^2 d\omega$

- If $K\left(\omega
 ight)$ can be negative, can set approx. bias to zero
- This paper:
 - Set bias to zero
 - Minimize variance
 - Similar to Epanechnikov kernel
- Call it the "high-order kernel"
 - Can then extrapolate to low frequencies
 - Yields lower bias given variance

æ

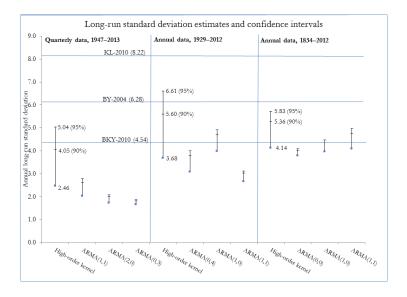

<ロ> (日) (日) (日) (日) (日)

May 20, 2014 15 / 23

3

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Ian Dew-Becker (Duke Fuqua)

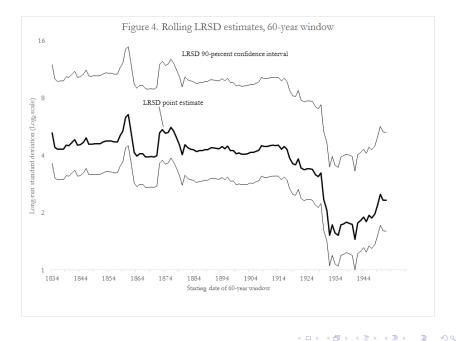

May 20, 2014 16 / 2

æ

イロト イヨト イヨト イヨト

- High-order estimator yields:
 - Almost exact CI coverage
 - Superio bias/variance tradeoff

- Now apply high-order estimator to the data
- Three samples:
 - Post-war quarterly
 - Post-1929 annual
 - Post-1834 annual (Barro and Ursua)


э

- Full-sample point estimate: 4.14% per year
- Post-war data much less volatile
- Conservative LRR calibrations look reasonable
- Parametric estimators yield much tighter CI

(annualized)		
	Long-run SD	Moments matched
Campbell and Cochrane (1999)	1.50	SD(dc) 1947-1995
Gourio (2010)	2.00	SD(TFP), 1947-2010
Barro(2006), Wachter (2010)	2.00	SD(dy) 1954-2004, international
Tallarini (2000)	2.30	SD(dc), 1948-1993
Mehra and Prescott (1985)	3.16	SD(dc) 1889-1978
Boldrin, Christiano, and Fisher (2001)	3.60	Various unconditional SDs, 1964-1988
Abel (1990)	3.60	SD(dc) 1889-1978
Barberis, Huang, and Santos (2001)	3.80	SD(dc), 1889-1985
Bansal, Kiku, and Yaron (2008)	4.54	Annual SD(dc), autocorrelations, 1929-2008
Drechsler and Yaron (2011)	4.83	Annual SD(dc), autocorrelations, 1929-2006
Campanale, Castro, and Clementi (2010)	5.20	SD(dy), 1947-2005
Bansal and Yaron (2004);		
Croce, Lettau, and Ludvigson (2010)	6.28	Annual SD(dc), autocorrelations, 1929-1998
Croce (2010)	8.05	Annual SD(dTFP), 1947-2010
Kaltenbrunner and Lochstoer (2010)	8.22	SD(dc), SD(dc)/SD(dy)
Colacito and Croce (2011)	9.02	SD(dc), currency movements

Table 1. Recent calibrations of the long-run standard deviation of consumption growth (annualized)

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

- Long-run standard deviation is key moment for models with Epstein–Zin preferences
- Develop novel estimator: lower variance, better confidence interval coverage
- Delivers benchmark estimates of LRSD