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Abstract

This paper proposes a novel first-order approximation technique for standard economic models with

time-varying risk aversion or volatility. The log-linearization is identical up to the first order to per-

turbation, but it includes volatility adjustments that perturbation would treat as "higher-order" that

follow from the use of closed-form expressions for log-normal expectaions. I calculate Euler equation

errors for the RBC model with time-varying risk aversion and volatility and find that the essentially

affi ne approximation has accuracy between that of second and third-order perturbations. The equilib-

rium dynamics take a fully linear state-space form, so models can be estimated with the Kalman filter,

rather than a more computationally intensive nonlinear filter. The approximation encompasses a variety

of well-known methods specialized for use in particular settings, including general equilibrium models,

models of time-varying risk aversion, portfolio choice, and endowment-economy asset pricing.

Keywords: Approximation, linearization, asset pricing, general equilibrium

1 Introduction

This paper introduces a general method for approximating dynamic economic models that is designed to

capture the effects of time-varying volatility and risk aversion in a fully linear setting. In many models,

all of the equilibrium equations involving expectations weight future states of the world by a pricing

kernel that is identical across equations. That is, they involve so-called risk-neutral expectations over

future payoffs. Rather than approximating the risk-neutral expectations directly as in perturbation, I

approximate the pricing kernel (the mapping from the physical into the risk-neutral density) and the
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views in this paper are my own and do not represent those of the Federal Reserve System.
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operands of the expectations separately. The key result is that by using the closed-form expression for

the expectation of a log-normally distributed variable, we can obtain first-order approximations in which

changes in volatility or risk aversion affect the endogenous variables of the model. We can therefore use

standard linear filtering methods to estimate dynamic models with time-varying risk premia. This paper

provides an approximation framework useful for estimating medium- and large-scale models with realistic

descriptions of asset markets.

As a simple example, consider the canonical real business cycle (RBC) model under power utility, in

which the Euler equation involves the expectation of the household’s stochastic discount factor (SDF)

multiplied by the return on capital. The method I propose is to take log-linear approximations to the SDF

and return on capital separately. The return on capital, Rk,t+1, and pricing kernel Mt+1 = β (Ct+1/Ct)
−ρ

are approximated as

Rk,t+1 ≈ exp (f0 + fxxt + fx′xt+1) (1)

Mt+1 ≈ exp (log β − ρ (ct+1 − ct)) (2)

where xt is a vector of state variables, ct is the log of household consumption, and β is the rate of pure

time preference.

The Euler equation is then approximated as

0 = logEt [Mt+1Rk,t+1] (3)

= logEt [exp (f0 + fxxt + fx′xt+1 + log β − ρ (ct+1 − ct))] (4)

If xt and ct follow linear Gaussian processes, then the right-hand size of (4) will be linear in xt, Etxt+1, ct,

and Etct+1, but it will also have an adjustment for the volatilities of xt+1 and ct+1 and their covariance,

i.e., the covariance of the SDF and the return on capital:

0 = f0 + fxxt + fx′Etxt+1 + log β − ρ (Etct+1 − ct) +
1

2
var (fx′xt+1 − ρct+1) (5)

The first-order approximation thus directly accounts for precautionary-saving and risk-premium effects.

An alternative interpretation of the approximation for the RBC model is that if the household actually
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faced a log-linear return on capital and budget constraint, the solution obtained from the essentially affi ne

approximation would be exact.

The analysis takes advantage of the fact that the pricing kernel in economic models often falls into the

essentially affi ne class described by Duffee (2002), so I call it the essentially affi ne approximation method.

Essentially affi ne pricing kernels allow for time-varying risk premia, but risk-neutral expectations over

payoffs that are log-linear in the state variables will themselves be log-linear in the state variables.

The essentially affi ne method is designed to accommodate two main sources of time variation in volatil-

ity. First, the fundamental shocks in the model may be heteroskedastic. Second, the pricing kernel, even

though it is conditionally linear, may have a time-varying loading on the fundamental shocks, for example

due to time-varying risk aversion. Critically, and unlike first-order perturbation, the method does not

impose or imply certainty equivalence. Movements in risk premia can have real effects on endogenous vari-

ables. So, for example, this method makes it possible to use the standard Bayesian methods in the macro

literature (e.g., Smets and Wouters, 2003) to estimate the effects of changes in risk premia on output,

consumption, and investment.

To allow for shifts in risk premia to have real effects in equilibrium models, the standard current method

is to use higher-order perturbation (e.g., Rudebusch and Swanson, 2011). But methods for estimating

nonlinear models, such as the particle filter, tend to be orders of magnitude slower than linear methods,

which can seriously hinder empirical work (Fernandez-Villaverde and Rubio-Ramirez, 2007). Consider, for

example, the problem of estimating a structural model of the term structure of interest rates (e.g., Bekaert,

Cho, and Moreno, 2010). It is well known that the likelihood surface in term structure models tends to

have many flat points and local maxima, and hence finding the global maximum can require extensive

searching. This searching may be infeasibly slow with nonlinear estimation techniques that use simulations

to calculate the likelihood.1 Moreover, higher-order perturbations require the calculation of many more

derivatives than the essentially affi ne method, which can be costly in large models (the required number

of derivatives grows exponentially with the order of the approximation). Although the essentially affi ne

method may not ease estimation when the fundamental shocks are heteroskedastic (since a nonlinear filter

is required whatever the order of the solution), Dew-Becker (2011a) finds that it is useful for estimating a

model with time-varying risk aversion.

1 In fact, Ang and Piazessi (2003) are unable to find a global maximum in a completely linear term structure model. The
term structure literature has thus far generally avoided the added trouble of allowing for nonlinearity.
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Even though the essentially affi ne approximation allows time-varying risk premia to have real effects,

it is still based on a set of linearizations. Because we linearize parts of the model, the method is no more

than first-order accurate local to the non-stochastic steady state. Specifically, when there is no volatility,

the essentially affi ne approximation is identical to a first-order perturbation (the essentially affi ne method

includes corrections involving σ2, the variance of the shocks, which perturbation treats as higher-order).

To show that there is a benefit to using the essentially affi ne method, I calculate Euler equation errors

for the RBC model under stochastic volatility and time-varying risk aversion. In both cases, the essentially

affi ne solution is at least an order of magnitude more accurate than a first-order perturbation and has

accuracy between that of second- and third-order perturbations. However, the essentially affi ne method

has the advantage over higher-order approximations of being compatible with linear filtering methods,

which makes it well suited to empirical analysis.

The macro literature has recently begun to explore the roles of time-varying volatility and risk premia

in the business cycle (e.g., Bloom, 2009; Fernandez-Villaverde et al., 2011; Gourio, 2010; Lettau and Uhlig,

2000; Rudebusch and Swanson, 2011; Tallarini, 2000). These papers, however, require the use of either

high-order perturbations or more complex so-called global solution methods (e.g., projection) and no so-

called medium-scale models have been estimated with time-varying risk premia. Benigno, Benigno, and

Nistico (2010) recently suggest a variation on perturbation in which asset prices respond to stochastic

volatility in the first-order approximation (see also Jermann, 1998), but movements in volatility do not

affect real variables, unlike here.

Malkhozov and Shamloo (2011) study an alternative method that also takes advantage of log-normal

formulas. Their method is designed to accommodate stochastic volatility, but they do not focus on using

exact formulas for the pricing kernel (the essentially affi ne case, in particular) as I do. I also show how to

approximate models of time-varying risk aversion, which their framework does not accommodate.

Essentially affi ne methods are widely used in the asset pricing literature, not only for pricing bonds

(Duffee, 2002) but also, more recently, for pricing equities (e.g., Bansal and Yaron, 2004; Lettau and

Wachter, 2007). Earlier, Campbell and Koo (1997) and Campbell and Viceira (1999), among many others,

also employ a special case of the essentially affi ne method for studying portfolio choice models. This paper

gives a general treatment of their methods and provides a rigorous characterization of their local accuracy.

The remainder of this paper is organized as follows. I begin by describing the basic environment in

section 2. Next, I move from the general approximation method to the specifics of the first-order method
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in section 3. As examples, I show how to solve the RBC model with power utility with homoskedastic

and heteroskedastic shocks and also Epstein—Zin preferences with time-varying risk aversion, as in Dew-

Becker (2011b). The derivations are slightly different depending on whether we use stochastic volatility or

time-varying risk aversion, but the output of the approximation takes the same log-linear form for both

cases. The final section of the paper examines Euler equation errors and shows that the essentially affi ne

approximation is substantially more accurate that a first-order approximation in the benchmark models,

and competitive with higher-order perturbations.

2 Preliminaries

I consider a dynamic system of variables contained in the vector Xt of dimension NX×1. There is a vector

of mean-zero, normal, and serially uncorrelated exogenous shocks εt of dimension Nε.

The economic model is defined by a set of constraints determining the dynamics of Xt

0NX×1 = G (Xt, Xt+1, σεt+1) (6)

where 0NX×1 is a vector of zeros of length NX , G : RNX × RNX × RNε → RNX , and σ is a scalar used

to control the variances of the shocks in the approximations. σ = 1 in the true model, but we will also

consider behavior local to σ = 0, as in the perturbation literature. The function G may (and usually will)

involve the expectation operator.2

We divide the equations into two types. The first is a set of ND non-expectational equations that take

the form

0ND×1 = D (Xt, Xt+1, σεt+1) (7)

with D : RNX × RNX × RNε →RND . The defining characteristic of these equations is that they do not

involve the expectation operator. D could include, for example, budget constraints.

2Malkohozov and Shamloo (2011) make a recent contribution. They study an alternative case in which 0NX×1 =
f (xt−1, xt, EtΓ expxt+1) for some function f where Et denotes the expectation operator conditional on information avail-
able at date t, which is more restrictive than (6). It is not clear how many economic models can be expressed in the form
0NX×1 = f (xt−1, xt, EtΓ expxt+1) (the RBC model studied here cannot). More important, Malkhozov and Shamloo’s work
only discusses stochastic (and Gaussian) volatility, whereas the analysis here was originally designed to cover time-varying
risk aversion.
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The second set of equations is forward-looking and involves mathematical expectations,

1NF×1 = Et [M (Xt, Xt+1, σεt+1)× F (Xt, Xt+1, σεt+1)] (8)

where Et denotes the expectation operator conditional on information available at date t. The function F :

RNX ×RNX ×RNε →RNF , with NF +ND = NX , is vector-valued, whereas M : RNX ×RNX ×RNε →R is

a scalar function. The function M (Xt, Xt+1, σεt+1) is a pricing kernel or stochastic discount factor (SDF)

that reweights the expectation. In the RBC model, for example, M (Xt, Xt+1, σεt+1) is the household’s

marginal rate of substitution between dates t and t+ 1, while F is the gross return on investment.

Example 1: The RBC model with power utility. The representative household

maximizes
∞∑
j=0

βj
C1−ρ
t+j

1− ρ (9)

subject to the constraints

Ct +Kt+1 = (1− δ)Kt +AtK
α
t (10)

logAt = φ logAt−1 + σεt (11)

where Ct is consumption, Kt capital, and At the level of technology.

The Euler equation is

1 = Et
[
β (Ct+1/Ct)

−ρ (αAt+1K
α−1
t+1 + 1− δ

)]
(12)

In the notation from above, we can say Xt = [ct, kt, at]
′, where lowercase letters denote logs,

and

D (Xt, Xt+1, σεt+1) =

 (1− δ) exp (kt) + exp (at + αkt)− exp (ct)− exp (kt+1)

at+1 − φat − σεt+1

 (13)
M (Xt, Xt+1, σεt+1) = β exp (−ρ (ct+1 − ct)) (14)

F (Xt, Xt+1, σεt+1) = α exp (at+1 + (α− 1) kt+1) + 1− δ (15)
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The separation ofM and F is the key difference between the essentially affi ne method and perturbation.

The basic observation is simply that in many widely used economic models, the equilibrium equations that

involve expectations are weighted by the household’s stochastic discount factor. This is true in the simple

RBC model, and medium-scale New-Keynesian models (e.g., Smets and Wouters, 2003) generally have

the same feature. Even if a model has an expectational equation that does not involve the SDF, i.e.,

1 = Et [Z (Xt, Xt+1, σεt+1)] for some function Z, it is always possible to write it in the form (8) simply by

multiplying and dividing by M ,

1 = Et

[
M (Xt, Xt+1, σεt+1)× Z (Xt, Xt+1, σεt+1)

M (Xt, Xt+1, σεt+1)

]
(16)

and then setting F = Z/M in equation (8).

3 Log-linear solutions

This section derives first-order approximations to the system

0ND×1 = D (Xt, Xt+1, σεt+1) (17)

1NF×1 = Et [M (Xt, Xt+1, σεt+1)× F (Xt, Xt+1, σεt+1)] (18)

I consider two related cases. The first uses log-linear approximation to the pricing kernel M and allows

for stochastic volatility. The second is for a so-called essentially affi ne pricing kernel when risk aversion is

time-varying. In both cases, I show that the solutions coincide with standard perturbation approximations

except that they include a volatility correction. In the case of a deterministic model, the solutions coincide

exactly with perturbation.

The basic idea is to use log-linear approximations forM , D, and F , and then find a process for Xt that

solves (17-18) exactly. In the RBC model, this corresponds to using the exact formula for the household’s

marginal rate of substitution, β (Ct+1/Ct)
−ρ, and log-linearizing the budget constraint and the return on

capital. We then solve for the law of motion for capital (equivalently, the consumption function) that

jointly satisfies the budget constraint and the Euler equation.

7



3.1 Steady state and approximations

In both cases of the approximation I consider, the approximations are taken around the non-stochastic

steady state, defined as the X̄ that solves the system

0ND×1 = D
(
X̄, X̄, 0

)
(19)

1NF×1 = Et
[
M
(
X̄, X̄, 0

)
× F

(
X̄, X̄, 0

)]
(20)

We will repeatedly use first-order approximations to the various functions, so define

DX ≡ ∂D (Xt, Xt+1, εt+1)

∂Xt
(21)

DX′ ≡
∂D (Xt, Xt+1, εt+1)

∂Xt+1
(22)

Dε ≡
∂D (Xt, Xt+1, εt+1)

∂εt+1
(23)

where the derivatives here and throughout are evaluated at
(
X̄, X̄, 0

)
. The derivatives of M and F are

denoted analogously. We will use using log-linear approximations to M and F , so we define

m (Xt, Xt+1, εt+1) ≡ log (M (Xt, Xt+1, εt+1)) (24)

f (Xt, Xt+1, εt+1) ≡ log (F (Xt, Xt+1, εt+1)) (25)

with the derivatives of m and f denoted as above. Also,

D̄ ≡ D
(
X̄, X̄, 0

)
(26)

and M̄ and F̄ are defined analogously. Last, a circumflex denotes the deviation from steady-state,

X̂t ≡ Xt − X̄ (27)
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3.2 Case 1: Constant volatility and a linearized SDF

Suppose the shocks are homoskedastic and normally distributed:

εt ∼ N (0Nε×1,Σ) (28)

We approximate the three functions determining the equilibrium as

D
(1)
t+1 = D̄ +DXX̂t +DX′X̂t+1 +Dεσεt+1 (29)

M
(1)
t+1 = exp

(
m̄+mXX̂t +mX′X̂t+1 +mεσεt+1

)
(30)

F
(1)
t+1 = exp

(
f̄ + fXX̂t + fX′X̂t+1 + fεσεt+1

)
(31)

where the superscript (1) denotes a first-order approximation. The approximations to the equilibrium

conditions (17—18) are

0 = DXX̂t +DX′X̂t+1 +Dεσεt+1 (32)

0 = logEt exp
(

(mX + fX) X̂t + (mX′ + fX′) X̂t+1 + (mε + fε)σεt+1

)
(33)

(where exp
(
m̄+ f̄

)
= 1 and D̄ = 0 from the definition of the non-stochastic steady-state).

Now we guess that the solution to this system takes the form

X̂t+1 = H0 +HXX̂t +Hεσεt (34)

Plugging this guess into (32—33), we obtain

0 = DXX̂t +DX′

(
H0 +HXX̂t +Hεσεt

)
+Dεσεt+1 (35)
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and

0 = logEt exp

 (mX + fX) X̂t

+ (mX′ + fX′)
(
H0 +HXX̂t +Hεεt

)
+ (mε + fε)σεt+1

 (36)

= (mX + fX) X̂t + (mX′ + fX′)EtX̂t+1

+
1

2
σ2 (mε + fε + (mX′ + fX′)Hε) Σ (mε + fε + (mX′ + fX′)Hε)

′ (37)

where (37) uses the formula for the expectation of a log-normally distributed variable.

So the goal is to find matrices H0, HX , and Hε that solve (35) and (37). Sims (2001) provides

an algorithm, Gensys, that solves systems of equations taking the form of (35) and (37).3 The Gensys

algorithm will give values for H0, HX , and Hε, but we have the problem that the system of equations

involves the as-yet unknown matrix Hε. We therefore solve the model iteratively. The full solution

algorithm is as follows:

Solution Algorithm: Basic case

Step 1: Approximate the three components of the equilibrium conditions as in (29-31).

Step 2: Use the Gensys algorithm to solve the system

0 = (fX +mX) X̂t + (fX′ +mX′)EtX̂t+1 (38)

0 = DXX̂t +DX′X̂t+1 +Dεσεt+1 (39)

at σ = 1, which delivers coeffi cient matrices H(0)
0 , H(0)

X , and H(0)
ε for the a law of motion for

X̂t,

X̂t+1 = H
(0)
0 +H

(0)
X X̂t +H(0)

ε σεt+1 (40)

Step 3: For j > 0, solve the system (again, at σ = 1)

0 = (fX +mX) X̂t + (fX′ +mX′)EtX̂t+1

+
1

2
σ2
(

(fX′ +mX′)H
(j−1)
ε + fε +mε

)
Σ
(

(fX′ +mX′)H
(j−1)
ε + fε +mε

)′
(41)

0 = DXX̂t +DX′X̂t+1 +Dεσεt+1 (42)

3Code for Gensys, is available on his website, http://www.princeton.edu/~sims/
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Iterate on step 3 until the matrices H(j)
0 , H(j)

X , H(j)
σ , and H(j)

ε converge.

�

The first thing to note about the solution method is that it requires an iteration. This is because the

effect of volatility on the equilibrium conditions, which appears through the term

1
2σ

2 ((fX′ +mX′)Hε + fε +mε) Σ ((fX′ +mX′)Hε + fε +mε)
′ in equation (37), depends on the equilib-

rium dynamics of the model through the Hε matrix. In general, the iteration method proposed here need

not converge. However, if it does, we clearly have a valid solution to the model.4

I show below that if we stopped at step 2, we would have a standard perturbation solution to the

model. The essentially affi ne method differs from perturbation because it corrects for the volatility term.

The volatility term represents a discount for risk in the Euler equations that first-order perturbation

ignores. It means, for example, that in the RBC model, volatility will affect investment through its effects

on risk premia and precautionary saving.

The example in section 2 was a general-equilibrium model, but the analysis here also covers methods

widely used in the asset-pricing literature. Bansal and Yaron’s (2004) analysis of economies with long-run

risks and the approximations used for the analysis of portfolio choice problems, e.g. Campbell and Koo

(1997) and Campbell and Viceira (1999), are both special cases of the essentially affi ne method.

Example 1 (continued): To approximate the RBC model, we approximate the three

functions D, m, and f . Recall that Xt = [ct, kt, at]
′,

D (Xt, Xt+1, σεt+1) =

 (1− δ) exp (kt) + exp (at + αKt)− exp (ct)− exp (kt+1)

at+1 − φat − σµt+1

 (43)
M (Xt, Xt+1, σεt+1) = β exp (−ρ (ct+1 − ct)) (44)

F (Xt, Xt+1, σεt+1) = α exp (at+1 + (α− 1) kt+1) + 1− δ (45)

In the notation from above,

m0 = log β mX = [ρ, 0, 0]

mX′ = [−ρ, 0, 0] mε = 0
(46)

4 In both simple and complex models, I find convergence to be rapid, generally occuring in fewer than 10 iterations. I
encounter failures to converge only in cases with extreme parameter values.
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We take a log-linear approximation to F to obtain

f (Xt, Xt+1, σεt+1) ≈ log
(
α exp (ā) exp

(
(α− 1) k̄

)
+ 1− δ

)
+ αĀK̄α−1

αĀK̄α−1+1−δ

(
ât+1 + (α− 1) k̂t+1

)
(47)

And hence

f0 = log
(
α exp (ā) exp

(
(α− 1) k̄

)
+ 1− δ

)
(48)

fX = [0, 0, 0] (49)

fX′ =
[
0, α(α−1)ĀK̄α−1

αĀK̄α−1+1−δ ,
αĀK̄α−1

αĀK̄α−1+1−δ

]
(50)

fε = 0 (51)

Finally, we approximate D as

D (Xt, Xt+1, σεt+1) ≈

 (1− δ) exp
(
k̄
)
k̂t + exp

(
ā+ αk̄

) (
ât + αk̂t

)
− exp (c̄) ĉt − exp

(
k̄
)
k̂t+1

at+1 − φat − εt+1


(52)

and

DX =

0 − exp
(
k̄
)

0

0 0 1

 (53)

DX′ =

− exp (c̄) (1− δ) exp
(
k̄
)

+ α exp
(
ā+ αk̄

)
exp

(
ā+ αk̄

)
0 0 −φ

 (54)

Dε′ =

 0

−1

 (55)

�

Note that in this section we are using the exact formula for the SDF — there is no approximation.

So the solution to the RBC model here can be viewed as an exact solution to an economy in which the

household faces a fundamentally log-linear budget constraint and return on investment.5

5The solution here can be shown to coincide exactly with that of Campbell (1994) if his log-linear approximations are also
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More generally, the solution algorithm in this case does not require that the SDF is exactly log-

linear even though constant relative risk aversion tends to induce a log-linear SDF (e.g., under power

utility and Epstein—Zin preferences), so an approximation to the SDF will often not be required. That is,

m = m0 +mxX̂t +mx′X̂t+1 exactly in most cases.

3.3 Case 1a: Stochastic volatility and a linearized SDF

Given the analysis above, it is straightforward to accommodate stochastic volatility. Suppose the condi-

tional distribution of εt is

εt ∼ N (0Nε×1,Σt) (56)

Σt is an Nε × Nε variance matrix for εt with elements, vec (Σt), that are contained in the vector of

endogenous variables Xt, (where vec (·) is the vectorization operator that stacks the columns of a matrix).

Note that the dynamics of vec (Σt) cannot be completely unrestricted since Σt must remain positive semi-

definite.

The equilibrium conditions (35) and (37) then become

0 = (mX + fX) X̂t + (mX′ + fX′)EtX̂t+1

+
1

2
σ2 (mε + fε + (mX′ + fX′)Hε) Σt (mε + fε + (mX′ + fX′)Hε)

′ (57)

0 = DXX̂t +DX′

(
H0 +HXX̂t +Hεσεt

)
+Dεσεt+1 (58)

The only difference is that there is now a time subscript on Σt. But because all the elements of Σt are

contained in Xt, 1
2σ

2 (mε + fε + (mX′ + fX′)Hε) Σt (mε + fε + (mX′ + fX′)Hε)
′ is linear in X̂t, and we

can use the same solution algorithm as in case 1.

3.4 Case 2: Time-varying risk aversion

In this case, we allow for the possibility of time-varying risk aversion, which generates endogenous het-

eroskedasticity in the SDF. This case encompasses Epstein—Zin preferences both in their standard form

(Epstein and Zin, 1991) and with time-varying risk aversion, as in Melino and Yang (2003) and Dew-Becker

taken at the non-stochastic steady-state. Lettau (2003) extends Campbell’s (1993) analysis to cover the case of Epstein—Zin
preferences. Case 2 below covers his analysis.
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(2011b). Specifically, the Epstein—Zin SDF with time-varying risk aversion is

Mt+1 = exp

(
1− αt
1− ρ log β − ρ1− αt

1− ρ (ct+1 − ct) +
ρ− αt
1− ρ rw,t+1

)
(59)

where rw is the log return on the household’s wealth (i.e., a claim to its consumption stream).

Assume that the shocks are normal and homoskedastic:

εt ∼ N (0Nε×1,Σ) (60)

Given (59), we need to solve the Euler equations not only for F (e.g. the return on capital), but also

for the return on the household’s total wealth. The two equations are

1 = Et [exp (mt+1)F (Xt, Xt+1, σεt+1)] (61)

1 = Et [exp (mt+1 + rw,t+1)] (62)

To solve the model, we take a first-order approximation to F as before, giving

0 = logEt

exp

 1−αt
1−ρ log β − ρ1−αt

1−ρ (ct+1 − ct) + ρ−αt
1−ρ rw,t+1

+f0 + fXX̂t + fX′X̂t+1 + fεσεt+1


 (63)

= logEt

exp

 −ρ1−αt
1−ρ Γc

(
X̂t+1 − X̂t

)
+ ρ−αt

1−ρ ΓwX̂t+1

+fXX̂t + fX′X̂t+1 + fεσεt+1


 (64)

where Γc and Γw are selection vectors such that ΓcXt = ct and ΓwXt = rw,t+1. Now we guess that

X̂t+1 = H0 +HXX̂t +Hεσεt+1 (65)

Substituting (65) into (64) yields

0 = −ρ1− αt
1− ρ Γc

(
EtX̂t+1 − X̂t

)
+
ρ− αt
1− ρ ΓwEtX̂t+1 + fXX̂t + fX′EtX̂t+1

+
1

2
σ2

(
−ρ1− αt

1− ρ Γc +
ρ− αt
1− ρ Γw + fX′ + fε

)
HεΣH

′
ε

(
−ρ1− αt

1− ρ Γc +
ρ− αt
1− ρ Γw + fX′ + fε

)′
(66)
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Similarly, for the wealth portfolio, the Euler equation (62) becomes

0 = logEt exp

(
−ρ1− αt

1− ρ Γc

(
X̂t+1 − X̂t

)
+

1− αt
1− ρ ΓwX̂t+1

)
(67)

= (−ρΓc + Γw)
(
EtX̂t+1 − X̂t

)
+

1

2

1− αt
1− ρ σ

2 (−ρΓc + Γw)HεΣH
′
ε (−ρΓc + Γw)′ (68)

Substituting (68) into (66) yields

0 = −ΓwEtX̂t+1 + fXX̂t + fX′EtX̂t+1

+
1− ᾱ− ΓαX̂t

1− ρ (−Γw + fX′ + fε)HεΣH
′
ε (−ρΓc + Γw)′

+
1

2
σ2 (−Γw + fX′ + fε)HεΣH

′
ε (−Γw + fX′)

′ (69)

where Γα is the selection vector such that ΓαXt = αt.

Looking at (66), the Jensen adjustment on the second line is quadratic in one of the state variables, αt.

This is part of the time-varying precautionary saving effect that arises due to movements in risk aversion.

The same effect appears in the Euler equation for the wealth portfolio, (68), so we can use (68) to substitute

the quadratic terms out of (66).

Finally, (69) is, once again, linear in the state variables and can be solved using standard methods. As

in case 1, though, the system of equations depends on the decision rule through Hε. So again we use an

iteration. The algorithm is as follows:

Solution Algorithm: Epstein—Zin preferences with time-varying risk aversion

Step 1: Linearly approximate D (xt, Xt+1, σεt+1) and f (xt, Xt+1, σεt+1)

Step 2: Use the Gensys algorithm to solve the system (at σ = 1)

0 = fX + X̂t + (fX′ − Γw)EtX̂t+1 (70)

0 = DXX̂t +DX′X̂t+1 +Dεσεt+1 (71)

which delivers a law of motion for X̂t

X̂t+1 = H
(0)
0 +H

(0)
X X̂t +H(0)

ε σεt+1 (72)
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Step 3: For j > 0, solve the system

0 = −ΓwEtX̂t+1 + fXX̂t + fX′EtX̂t+1

+σ2 1− ᾱ− ΓαX̂t

1− ρ (−Γw + fX′ + fε)HεΣH
′
ε (−ρΓc + Γw)′ (73)

+σ2 1

2
(−Γw + fX′ + fε)HεΣH

′
ε (−Γw + fX′)

′ (74)

0 = DXX̂t +DX′X̂t+1 +Dεσεt+1 (75)

Iterate on step 3 until the matrices H(j)
0 , H(j)

X , H(j)
σ , and H(j)

ε converge.

�

Now note that we have not used any approximation to the SDF here. The only equations we approxi-

mate are those for F and D.

Example 2: RBC model with Epstein—Zin preferences and time-varying risk

aversion

The household’s objective function is

Vt =

{
(1− β)C1−ρ

t + βEt
[
V 1−αt
t+1

] 1−ρ
1−αt

} 1
1−ρ

(76)

where risk aversion follows an exogenous process,

αt = (1− φα) ᾱ+ φααt−1 + σεα,t (77)

The budget constraint and technology process are the same as in example 1,

Ct +Kt+1 = (1− δ)Kt +AtK
α
t (78)

logAt = φ logAt−1 + σεA,t (79)

The SDF is

Mt+1 = β
1−αt
1−ρ

(
Ct+1

Ct

)−ρ 1−αt
1−ρ

R
ρ−αt
1−ρ
w,t+1 (80)

where Rw,t+1 is the return on an asset that pays Ct as its dividend. We define the price/dividend
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ratio on that asset, PCt, as an auxiliary variable, with

Rw,t+1 =
PCt+1 + 1

PCt

Ct+1

Ct
(81)

The vector Xt is then Xt = [ct, kt, rw,t, pct, at, αt]
′, and the equations involved in the equi-

librium are

D (Xt, Xt+1, σεt+1) =



(1− δ) exp (kt) + exp (at + αKt)− exp (ct)− exp (kt+1)

rw,t+1 − exp(pct+1)+1
exp(pct)

exp (ct+1 − ct)

at+1 − φat − σεA,t+1

αt+1 − (1− φα) ᾱ− φααt − σεα,t+1


(82)

M (Xt, Xt+1, σεt+1) = β exp

(
−ρ1− αt

1− ρ (ct+1 − ct) +
ρ− αt
1− ρ rw,t+1

)
(83)

F (Xt, Xt+1, σεt+1) = α exp (at+1 + (α− 1) kt+1) + 1− δ (84)

Now note that M is no longer log-linear in the endogenous variables: αt interacts with ct, ct+1,

and rw,t+1.

As in case 1, we are using the exact formula for the SDF. So the law of motion we obtain

for X̂t can be viewed as an exact solution to a version of the model in which the household

faces a log-linear budget constraint and log-linear returns on capital and wealth.

�

3.5 Relationship with perturbation

The standard perturbation solution proceeds by linearizing the product M × F , instead of approximating

them separately. Specifically, define

J (Xt, Xt+1, εt+1) ≡M (Xt, Xt+1, εt+1)× F (Xt, Xt+1, εt+1)− 1 (85)
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so that the basic equilibrium conditions for the model with homoskedastic shocks and a log-linear SDF,

(17—18), are

0 = Et [J (Xt, Xt+1, εt+1)] (86)

0 = D (Xt, Xt+1, εt+1) (87)

The approximation to D will be the same in perturbation and the essentially affi ne approximation.

Taking a first-order approximation to J yields,

0 =
(
MX F̄ + FXM̄

)
X̂t +

(
MX′F̄ + FX′M̄

)
EtX̂t+1 (88)

Now for case 1 with stochastic volatility in which we used a log-linear approximation to the SDF, we

have

mX ≡ ∂ logM (Xt, Xt+1, εt+1)

∂Xt
(89)

= MX/M̄ (90)

and similar formulas for mX′ , fX , and fX′ . So the equilibrium condition for perturbation (88) can be

written as

0 = (mX + fX) X̂t + (mX′ + fX′)EtX̂t+1 (91)

(91) is identical to the equilibrium condition (37) in cases 1 and 1a when σ = 0. In other words, they are the

same up to a volatility adjustment. Moreover, they are first-order equivalent in σ. Only for second-order

changes in σ do the conditions differ. That is the sense in which perturbation and the essentially affi ne

approximation are equivalent up to the first order. The appendix derives the same result for case 2 with

time-varying risk aversion.

4 Accuracy of the approximation

The essentially affi ne approximation is identical to a first-order perturbation local to the non-stochastic

steady-state. To see how they differ in a stochastic setting, I calculate Euler equation errors over simulated
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paths for the state variables. I also report impulse-response functions from two models and show that the

essentially affi ne solution gives results highly similar to higher-order solution methods.

The two examples I consider are identical except that in one case volatility varies over time, whereas

risk aversion varies in the other. I use Epstein—Zin preferences in both examples, and the production side

of the model is a simple RBC setup.

4.1 Stochastic volatility

I study the simple RBC model as in the previous examples, with Epstein—Zin preferences and stochastic

volatility. The household’s objective function is

Vt =

{
(1− β)C1−ρ

t + β
(
EtV

1−α
t+1

) 1−ρ
1−α

} 1
1−ρ

(92)

and the equilibrium conditions defining the model are

0 = (1− δ)Kt +A1−γ
t+1K

γ
t − Ct+1 −Kt+1 (93)

0 = logAt+1 − logAt − εa,t+1 (94)

0 =
PCt+1 + 1

PCt

Ct+1

Ct
−RW,t+1 (95)

0 = st+1 − (1− φs)− φsst + εs,t+1 (96)

1 = Et

[
β
1−α
1−ρ

(
Ct+1

Ct

)−ρ 1−α
1−ρ

R
ρ−α
1−ρ
W,t+1

(
γA1−γ

t+1K
γ−1
t + 1− δ

)]
(97)

1 = Et

[
β
1−α
1−ρ

(
Ct+1

Ct

)−ρ 1−α
1−ρ

R
1−α
1−ρ
W,t+1

]
(98)

The shocks are distributed as

εt ≡

 εa,t

εs,t

 ∼ N

 0

0

 ,
 stσ

2
a 0

0 σ2
s


 (99)

st scales the volatility of the productivity shock and has a steady-state of 1. The parameter choices

are listed in table 1. σ2
s and φs are chosen so that the standard deviation of st is roughly 0.4, similar
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to Fernandez-Villaverde and Rubio-Ramirez (2010). The other parameters are standard in the literature.

Risk aversion is set to 15, and the EIS to 1.5.6

I define the Euler equation error as the percentage error in pricing a claim on capital,

1− Et
[
Mt+1

(
γA1−γ

t+1K
γ−1
t + 1− δ

)]
. A value of 10−1, for example, means that the model implies house-

holds misprice a unit of capital by 10 percent. The appendix discusses the details of how the Euler equation

errors are calculated.

Figure 1 plots histograms of the log10 Euler equation errors under the essentially affi ne approximation

and first-, second-, and third-order perturbations. As expected, increasing the order of the perturbation

reduces the errors substantially. The essentially affi ne method has accuracy essentially identical to that of a

second-order perturbation. These two approximations have different strengths, though. The second-order

perturbation is more faithful to the true budget constraint and return on capital, but it does not allow

consumption to respond in any way to innovations to volatility. The essentially affi ne approximation, on

the other hand, does allow a response of consumption to volatility changes. To the extent that our primary

interest in a model of this sort is how the economy responds to volatility shocks, the essentially affi ne

method seems preferable to a second-order perturbation.

The choice between a third-order perturbation and the essentially affi ne method here depends on the

researcher’s goals. If speed in calculating the model solution itself is important, then the essentially affi ne

method is preferable because it only requires taking one set of derivatives and solving a linear system of

equations. The speed advantage of the essentially affi ne method scales exponentially with the size of the

model. For small models in which speed is less critical, the third-order perturbation will be preferable

because it is more precise, capturing both the nonlinearities in the model and the response of consumption

to volatility.

4.2 Time-varying risk aversion

I now consider the RBC model with constant volatility but time-varying risk aversion as in example 2

above. I parameterize the model similarly to Dew-Becker (2011a); see table 1. Average risk aversion

is set to 15, while its unconditional standard deviation is 5.3. Figure 2 plots the log10 Euler equation

errors for the same four approximations as in figure 1. In this case, the essentially affi ne approximation is

6Note that becuase technology follows a random walk here, the variables must be rescaled in terms of At so that they have
a non-stochastic steady-state. The standard transformations apply here.
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clearly more accurate than first- and second-order perturbations, but again less accurate than a third-order

perturbation. The essentially affi ne approximation outperforms the first-order perturbation by two orders

of magnitude on average and the second-order perturbation by one order of magnitude.

To see how the essentially affi ne approximation affects the approximated dynamics of the RBC model,

figure 3 plots impulse response functions for the RBC model with time-varying risk aversion. Each line gives

the response (in percentage points) to a unit standard deviation decline in the coeffi cient of relative risk

aversion. The top panel shows that, as expected, neither the first- nor the second-order perturbation allows

a consumption response. The lines for third-order perturbation and the essentially affi ne approximation

show that consumption rises by 0.065 and 0.055 percentage points, respectively. The subsequent dynamics

are also similar.

The impulse responses for the expected excess return on the household’s wealth are even more similar

in the third-order and essentially affi ne approximations. Both imply that the expected excess return on

wealth falls by 0.002 percentage points following the shock (this effect is magnified for levered portfolios),

and again the dynamics are essentially identical. As before, the first- and second-order approximations give

no response to the risk aversion shock. Figure 3 thus shows that the essentially affi ne approximation gives

qualitatively and quantitatively similar responses to risk aversion shocks as a third-order perturbation.

As with stochastic volatility, third-order perturbation outperforms the essentially affi ne method in

terms of Euler equation errors. In this case, though, the essentially affi ne method has a key feature that

recommends it over higher-order approximations: models can be estimated using the standard Kalman

filter. Unlike with stochastic volatility, under time-varying risk aversion, the dynamics of the model under

the essentially affi ne approximation take on the state-space form required for the Kalman filter. So with

time-varying risk aversion, the essentially affi ne approximation enables fast filtering with standard linear

methods.

5 Conclusion

This paper introduces a general approximation technique that delivers linear approximations that account

for the effects of time-varying risk aversion, volatility, and disaster risk. In canonical settings, the ap-

proximation is orders of magnitude more accurate than a first-order perturbation and competitive with

second- and third-order perturbations. The method is particularly useful for allowing linear likelihood-
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based estimation of equilibrium asset pricing models with time-varying risk prices or time-varying disaster

risk.
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A Relation with perturbation under time-varying risk aversion

Under perturbation, the approximation to the two Euler equations for Epstein—Zin preferences (61—62) is

0 = Et

 FXM̄X̂t + FX′M̄X̂t+1 + FεM̄εt+1

+F̄ M̄ρ1−ᾱ
1−ρΓcX̂t + F̄ M̄

(
−ρ1−ᾱ

1−ρΓc + ρ−ᾱ
1−ρΓw

)
X̂t+1

 (100)

0 = M̄FXX̂t + M̄FX′EtX̂t+1 + ρ
1− ᾱ
1− ρΓcX̂t +

(
−ρ1− ᾱ

1− ρΓc +
ρ− ᾱ
1− ρΓw

)
EtX̂t+1 (101)

(noting that F̄ M̄ = 1) and

0 = ρ
1− ᾱ
1− ρΓcX̂t +

(
−ρ1− ᾱ

1− ρΓc +
1− ᾱ
1− ρΓw

)
EtX̂t+1 (102)

Substituting (102) into (101) yields,

0 =
FX
F̄
X̂t +

FX′

F̄
EtX̂t+1t − ΓwEtX̂t+1 (103)

0 = fXX̂t + fX′EtX̂t+1 − ΓwEtX̂t+1 (104)

which is, again, identical to the Euler equation obtained in the essentially affi ne approximation in equation

(69) except for the volatility terms. When σ = 0, perturbation and the essentially affi ne approximation

are identical, and as before, they are also first-order equivalent local to σ = 0.

B Calculating Euler equation errors

As an example, consider the model with stochastic volatility. The calculation for the other models

is analogous. Each approximation method generates a consumption function taking the form Ct =

C̃ (Kt−1, At−1, st−1, εa,t, εs,t). Given a value of Kt−1, we can calculate K̃t, which is the value that arises

under the consumption function C̃,

K̃t = At−1 exp (εa,t)K
α
t−1 + (1− δ)Kt−1 − C̃ (Kt−1, At−1, st−1, εa,t, εs,t)
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Similarly, the approximation methods imply a rule for the return on the wealth portfolio,

Rw,t = R̃ (Kt−1, At−1, st−1, εa,t, εs,t). The Euler equation error is then

Error (Kt−1, At−1, st−1, εa,t, εs,t) = Et


β
1−α
1−ρ

(
C̃(K̃t,At,st,εa,t+1,εs,t+1)
C̃(Kt−1,At−1,st−1,εa,t,εs,t)

)−ρ 1−α
1−ρ
×

R
(
K̃t, At, st, εa,t+1, εs,t+1

) ρ−α
1−ρ ×(

αAt exp (εa,t+1) K̃α−1
t + 1− δ

)

− 1

where At = At−1 exp (εa,t) and st = (1− φs) + φsst−1 + εs,t. The error is a function of the state vari-

ables as of date t − 1 and the realizations of the shocks on date t. I simulate the state variables under

the three approximations and then calculate the errors along the simulated paths. To calculate the ex-

pectations, I use Gaussian quadrature over the shocks with 15 abcissas. The figures plot histograms of

log10Error (Kt−1, At−1, st−1, εa,t, εs,t).
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Table 1. Calibration
Common parameters
γ 0.33 δ 0.02
ρ 0.66 β 0.99
Stochastic volatility
α 15 σs 0.05
φs 0.95 σa 0.01

Time-varying risk aversion
α 15 σα 1.66
φα 0.95 σa 0.01

Time-varying disaster risk
p 0.005 σp 0.000825
φp 0.92 B 0.4

Note: the top section gives parameters that are common to all three experiments. 
The remaining three sections give the parameters specific to the individual 
calibrations
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Figure 3. Responses to a decline in risk aversion

Note: responses to a unit standard-deviation decrease in risk aversion under the four approximations. The top panel plots 
consumption, the bottom panel the expected excess return on the household's wealth (a claim to aggregate consumption) above 
the risk-free rate. IRF are calculated from the stochastic steady states (where the model returns if all shocks equal zero).
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