Hedging macroeconomic and financial uncertainty and

volatility™

[an Dew-Becker, Stefano Giglio, and Bryan Kelly

September 30, 2020

Abstract

We study the pricing of shocks to uncertainty and volatility using a wide-ranging
set of options contracts covering a variety of different markets. If uncertainty shocks
are viewed as bad by investors, they should carry negative risk premia. Empirically,
however, uncertainty risk premia are positive in most markets. Instead, it is the realiza-
tion of large shocks to fundamentals that has historically carried a negative premium.
In other words, we find that the return premium for gamma is negative while that for
vega is positive. These results imply that it is jumps, for which exposure is measured
by gamma, not forward-looking uncertainty shocks, measured by vega, that drive in-
vestors’ marginal utility. In further support of the jump interpretation, the return
patterns are more extreme for deeper out of the money options.

JEL codes: G12, G13, D83, C33

1 Introduction

Background
It is well established that a wide range of measures of economic volatility and uncer-
tainty vary over time. Uncertainty about all features of the aggregate economy, including

productivity, the level of the stock market, inflation, interest rates, and energy prices, varies
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substantially, and often as the direct result of policy choices. It is therefore important to
understand how uncertainty affects the economy, both to reveal the basic drivers of economic
fluctuations and also to guide policymakers.

There are numerous theories, both in macro and finance, that explore the relationship
between uncertainty and real activity. This literature highlights that causation runs in
both directions, so even the sign of the relationship between the two is ambiguous in many
cases.! The empirical literature studying uncertainty in macroeconomics has focused almost
entirely on analyzing raw correlations or using vector autoregressions (VAR) with varying
identifying assumptions, and thus far it has not resolved the question of whether uncertainty
is contractionary in either the short- or long-run —i.e. whether uncertainty is typically good
or bad.

Parallel to the macro literature, there is a long-running literature in finance that studies
how uncertainty and volatility are priced in financial markets. That literature distinguishes
between the pricing of shocks to uncertainty about the future — i.e. shocks to conditional
variances or implied volatilities — and realized volatility, or the actual occurrence of jumps.
Constantinides, Jackwerth, and Savov (2013) and Cremers, Halling, and Weinbaum (2015),
for example, study the pricing of uncertainty and jump risk looking at option portfolios with

different vega (implied volatility) and gamma (realized volatility or jump) exposure.

Contribution and Methods

This paper takes a finance approach to evaluating the effects of uncertainty shocks,
building on the work of Constantinides, Jackwerth, and Savov (2013), Cremers, Halling, and
Weinbaum (2015), and Dew-Becker et al. (2017). Instead of studying a VAR with all of the
associated identification challenges, as in the macro literature, we use one of the key insights
of the finance literature, that financial markets provide a direct window on how investors
perceive shocks.? The main contribution of this paper relative to past work is to use options
across a wide range of underlyings and maturities to measure the risk premia associated
with shocks to uncertainty and to realized volatility. Those premia can furthermore be used
to construct implied premia on shocks to major macro uncertainty indexes and hence shed
light on the question of how uncertainty shocks affect the real economy.

If investors are willing to accept negative average returns on portfolios that hedge uncer-

IFor example, see Schwert (1989), Caballero (1999), Bloom (2009), Schwert (2011), Pastor and Veronesi
(2009), Bachmann and Moscarini (2012), and a summary discussion in Bloom et al. (2017) about the
potentially expansionary effects of uncertainty shocks. In finance, see the finance literature on good and bad
uncertainty, e.g. Bekaert, Engstrom, and Ermolov (2015) and Segal, Shaliastovich, and Yaron (2015).

2To be clear, the analysis of risk premia does not identify structural shocks; it only reveals the correlation
of innovations in marginal utility with reduced-form innovations to uncertainty (since there is no structural
identification here, we will use the terms “shock” and “innovation” interchangeably).



tainty shocks, as they would on an insurance contract, that implies that they view uncer-
tainty as being bad in that it rises in high marginal utility states. On the other hand, if the
hedging portfolios have positive average returns, then investors view uncertainty as typically
rising in low marginal utility (good) states. So rather than running sophisticated regressions
of output on uncertainty, we follow the finance tradition of letting investors speak to the
question.

While there is a large literature that estimates the risk premia for uncertainty about the
S&P 500 based on the pricing of options,® recent evidence shows that aggregate uncertainty
has multiple dimensions beyond the financial uncertainty captured by the S&P 500 (Lud-
vigson, Ma, and Ng (2015); Baker, Bloom, and Davis (2015)). This paper contributes to
the literature by estimating risk premia associated with uncertainty and realized volatility
(jumps) in 19 different markets covering a range of features of the economy, including finan-
cial conditions, inflation, and the prices of real assets. The broad range allows the analysis
to uncover consistent patterns in investors’ attitudes to different types of uncertainty. We
also use all the options together to construct hedging portfolios for aggregate uncertainty
measures developed in the literature — in Jurado, Ludvigson, and Ng (JLN; 2015) and the
economic policy uncertainty (EPU) index of Baker, Bloom, and Davis (2015). Fitting those
indexes actually requires using more than just the S&P 500 — the results show that to span
uncertainty about the real economy, it is important to have implied volatilities for real assets,
like energies and metals, underscoring the value of the breadth of our dataset.

In each of the 19 markets, we construct straddles and strangles at maturities of one to
five months, and measure two-week holding period returns. We show, both theoretically
and empirically, that the different maturities have different loadings on the underlying risks,
allowing estimation of risk premia using standard factor models. We examine risk premia
for two types of shocks — to uncertainty, and to realized volatility (jumps). An uncertainty
shock represents an increase in the dispersion of agents’ conditional distribution for future
outcomes, and an option’s exposure to uncertainty shocks is measured (approximately) by
its vega. The second shock is to the realization of large outcomes, i.e. exposure to realized
volatility, or gamma (formally, exposure to squared returns).

Vega and gamma — exposures to implied and realized volatility — have a formal link to
theoretical models. Whereas uncertainty in models is a forward-looking conditional variance,
realized volatility is a contemporaneous sample variance. That is, for some shock ¢, with
vary (€441) = o2, uncertainty is o2, while volatility is 2. Vega is literally the exposure of an

option to ¢}, while gamma is exposure to £7. The distinction between o7 and &7 is crucial

3See Egloff, Leippold, and Wu (2010), Dew-Becker et al. (2017), Van Binsbergen and Koijen (2017),
Andries et al. (2015), and Ait-Sahalia, Karaman, and Mancini (2015).



from a theoretical point of view: models in which forward-looking uncertainty matters for
the economy have predictions about o? but not about &7.

To summarize, then, the basic method in the paper is to measure risk premia on implied
and realized volatility (jumps), or vega and gamma, using a typical factor pricing model on
a panel of option returns across maturities, strikes, and numerous different underlyings. The
estimated premia are then used to infer the relationship of marginal utility with uncertainty
and realized volatility, both for specific underlyings and also for prominent macro uncertainty

indexes.

Results

The main results focus on straddles because the options in the portfolio are initially at
the money and hence most liquid. The empirical analysis yields three key findings. First,
across 19 option markets, the risk premium for hedging uncertainty shocks — vega — is in the
majority of cases positive. For nonfinancial underlyings and the JLN macro and inflation
uncertainty indexes, the premia are statistically and economically significantly positive, with
Sharpe ratios near 0.5. The results imply that investors in these markets view periods of
high uncertainty about the real economy as being good on average. For the financial sector
(including the S&P 500) and the JLN financial uncertainty and EPU index, the premium
on uncertainty is not clearly distinguishable from zero.

The second empirical result runs in the opposite direction: consistently across both
the financial and real sectors of the economy, portfolios that hedge realized volatility, or
jumps, earn statistically and economically significantly negative returns. Investors on average
therefore view periods in which shocks to fundamentals themselves are large as being bad.

It is well known that both volatility and uncertainty are countercyclical, but their overall
correlation is not as high as one might expect — only about 65 percent on average across
markets — and the average correlation between their innovations is only 0.2. The results here
show that innovations in realized volatility identify the states of the world that investors
view as actually negative, whereas surprise increases in implied volatility — which is high in
other, mostly unrelated, states of the world — are not on average perceived as bad.

Our findings for realized volatility contribute to the growing literature studying skewness
risk in the economy: if shocks to the economy (i.e. aggregate consumption) are skewed
to the left, then large shocks tend to be bad.* An explanation for the pricing of realized
volatility could then simply be that hedging realized volatility helps hedge downward jumps

and disasters in aggregate consumption. If it is truly jumps that drive pricing, then we would

4See Barro (2006), Bloom, Guvenen, and Salgado (2016), Seo and Wachter (2018a,b), Siriwardane (2015)
and Berger, Dew-Becker, and Giglio (2020). Dew-Becker, Tahbaz-Salehi, and Vedolin (2019) provide a
structural model for the source of aggregate skewness.



expect that the negative returns on options would be larger for options that are farther out
of the money. To test the hypothesis that the pricing is compensation for jump risk, we
extend the baseline results to examine returns on strangles, which are like straddles, in
holding both a put and a call, but in which both options are out of the money at inception.
Relative to straddles, strangles only have positive payoffs for relatively large movements in
the underlying.

Our third result is that the gamma/jump premia for strangles are about twice as large
as those for straddles, providing formal evidence for the idea that it is jumps, rather than
small (or diffusive) movements in underlying prices that investors are averse to. As with
the results for straddles, the result that deeper out-of-the-money options have more negative
returns is well known for the S&P 500. Our results are novel for showing that the same
result appears in a wide range of markets, including those linked to the real economy.

Because the variance risk premium is robustly negative across many markets, jumps —
which drive surprises in realized volatility — tend to be robustly viewed as bad events by in-
vestors, regardless of where they occur. According to asset prices, what policymakers should
focus on, rather than uncertainty about the future (the possibility that something extreme
might happen), is the realization of extreme (typically negative) events. For investors, the
results imply that the mean-variance efficient portfolio among the assets we study is short
gamma — jump risk — and either neutral to or long vega (exposure to implied volatility), and
we show that large Sharpe ratios are available when buying vega and selling gamma across
many markets. In the paper, we also build a simple extension of the standard long-run risk

model of Bansal and Yaron (2004) that shows how our results can arise in equilibrium.

Relationship with past work

The paper is related to two main strands of literature. The first studies the relation-
ship between uncertainty and the macroeconomy. Numerous channels have been proposed
through which uncertainty about various aspects of the aggregate economy may have real
effects, but the models do not generate a uniform prediction that uncertainty shocks are
necessarily contractionary.® Our results are more consistent with the expansionary forces
present in the models. There are also models with joint or reverse causation, such as Pastor
and Veronesi (2009) and Bachmann and Moscarini (2012).° The related empirical literature

tries to measure whether uncertainty does in fact have contractionary effects, finding often

®See Basu and Bundick (2017), Bloom (2009), Bloom et al. (2018), Leduc and Liu (2015), Gourio (2013),
Gilchrist and Williams (2005) and Bloom et al. (2017).

6See also Decker, D’erasmo and Boedo (2016), Berger and Vavra (2013), Ilut, Kehrig and Schneider
(2015), Kozlowski, Veldkamp, and Venkateswaran (2016), Cesa-Bianchi, Pesaran, and Rebucci (2018) and
Diercks, Hsu, and Tamoni (2019).



conflicting results.”

This paper builds on that work from a finance perspective, by providing measures of
risk premia that indicate how investors perceive the effects of aggregate uncertainty shocks
across many markets. The finance perspective of this paper means that the methods and
data are very different from papers that have instead used a macroeconomic approach to the
question. For example, Berger, Dew-Becker, and Giglio (2020) estimate a structural vector
autoregression as is common in the macroeconomics literature to try and understand the
effect of uncertainty shocks on the economy. This paper — while trying to answer a similar
question — takes a financial economics approach, studying risk premia, and requiring none
of the VAR identifying assumptions.

As discussed above, Constantinides, Jackwerth, and Savov (2013) and Cremers, Halling,
and Weinbaum (2015) are important precedents in the finance literature for studying the
pricing of shocks to uncertainty and volatility. We build on Constantinides, Jackwerth, and
Savov (2013) in that we also examine factor risk premia estimated from option returns,
with the innovation that we look across a broader range of markets. Our analysis uses
methods similar to that paper and also to those of Cremers, Halling, and Weinbaum (2015),
in that we study both a factor model and replicating portfolios. We differ from Cremers,
Halling, and Weinbaum (2015) in that we use option returns to measure risk premia, rather
than projecting stock returns onto uncertainty and volatility factors. Because stock returns
are driven by so many different risk factors, options can be useful for helping to isolate
underlying risks relatively precisely. That difference can help explain differences between
the results obtained by us and Constantinides, Jackwerth, and Savov (2013) relative to
Cremers, Halling, and Weinbaum (2015).

The paper also draws on a literature in finance estimating the pricing of volatility (?)
risk. The past literature almost exclusively studies the S&P 500, and it in general studies
just the variance risk premium, which is the pricing of realized volatility (as measured by
the average gap between option-implied and realized volatility).® In addition to studying a

much broader range of markets, our contribution is to also isolate the premium on implied

"For example, Schwert (1989), Schwert (2011), Berger, Dew-Becker, and Giglio (2020), Bretscher, Hsu,
and Tamoni (2019), Jurado, Ludvigson, and Ng (2015), Ludvigson, Ma, and Ng (2015), Baker, Bloom, and
Davis (2015), Bachmann and Bayer (2013), and Alexopoulos and Cohen (2009). For papers on different
types of uncertainty, see also Bretscher, Schmid, and Vedolin (2018), Elder and Serletis (2010), Darby et al.
(1999), Huizinga (1993) and Elder (2004).

8For example, see Ait-Sahalia, Karaman, and Mancini (2015), Bollerslev and Todorov (2011), Andersen,
Fusari, and Todorov (2015, 2017), Dew-Becker et al. (2016), Constantinides, Jackwerth, and Savov (2013),
Cremers, Halling, and Weinbaum(2015), and Farago and Tedongap (2018) for work on the S&P500. A few
papers have studied specific markets, like Bakshi, Kapadia, and Madan (2003), Mueller, Vedolin, and Yen
(2017), Prokopczuk et al. (2017), Trolle and Schwartz (2010).



volatility.

The remainder of the paper is organized as follows. Section 2 describes the data and
its basic characteristics. Our main results on the cost of hedging uncertainty and volatility
shocks are in Section 3. We then provide a theoretical derivation of the risk exposures of
the options in Section 4 and use it to construct replicating portfolios. Section 5 reports the
cost of hedging macroeconomic uncertainty and realized volatility, combining all 19 markets

together. Section 6 presents robustness results and Section 7 concludes.

2 Measures of uncertainty and realized volatility

This section describes our main data sources and then examines various measures of uncer-

tainty and realized volatility.

2.1 Data
2.1.1 Options and futures

We obtain data on prices of financial and commodity futures and options from the end-of-day
database from the CME Group, which reports closing settlement prices, volume, and open
interest over the period 1983-2015. Each market includes both futures and options, with
the options written on the futures. The futures may be cash- or physically settled, while
the options settle into futures. As an example, a crude oil call option gives its holder the
right to buy a crude oil future at the strike price. The underlying crude oil future is itself
physically settled — if held to maturity, the buyer must take delivery of oil.”

To be included in the analysis, contracts are required to have least 15 years of data and
maturities for options extending to at least six months, which leaves 14 commodity and 5
financial underlyings. The final contracts included in the data set have 18 to 31 years of
data. A number of standard filters are applied to the data to reduce noise and eliminate
outliers. Those filters are described in Appendix A.1.

We calculate implied volatility for all of the options using the Black—Scholes (1973)
model (technically, the Black (1976) model for the case of futures).!'® Unless otherwise

specified, implied volatility is calculated at the five-month maturity. We take this value as

9The underlying futures in general expire in the same month as the option. Crude oil options, for example,
currently expire three business days before the underlying future.

10The majority of the options that we study have American exercise, while the Black model technically
refers to European options. We examine IVs calculated assuming both exercise styles (we calculate American
IVs using a binomial tree) and obtain nearly identical results. Since there are no dividends on futures
contracts, early exercise is only rarely optimal for the options studied here.



the benchmark measure of uncertainty in each market. In general, longer maturities are
naturally more tightly linked to long-lived economic decisions, like physical investments. We
do not go past five months because there is less trade and liquidity at longer maturities,
making prices less reliable.

Implied volatilities extracted from options reflect market’s uncertainty about future re-
turns, but they also contain a risk premium, which can potentially vary over time. However,
even in the presence of that risk premium, implied volatilities appear to provide very good
summaries of the available information in the data for forecasting future volatility, driving out
other standard uncertainty measures from forecasting regressions. Online Appendix OA.1
compares implied volatilities to regression-based forecasts of future volatilities and shows
that they are all over 90 percent correlated (with an average correlation of 97 percent),
indicating that option-implied volatility is a good, if not perfect, proxy for true (physical)
uncertainty. For that reason, in what follows we refer to implied volatility and uncertainty
interchangeably, with the understanding that deviations due to time-varying risk premia are

quantitatively small at the monthly frequencies we focus on.!!

2.2 The time series of implied volatility

Figure 1 plots option implied volatility for three major futures: the S&P 500, crude oil, and
US Treasury bonds. The implied volatilities clearly share common variation; for example, all
rise around 1991, 2001, and 2008. On the other hand, they also have substantial independent
variation. Their overall correlations (also reported in the figure) are only in the range 0.5-0.6.

Table 1 reports pairwise correlations of implied volatility across the 19 underlyings. The
largest correlations in implied volatility are among similar underlyings — crude and heating
oil, the agricultural products, gold and silver, and the British Pound and Swiss Franc.
Correlations outside those groups are notably smaller, in many cases close to zero. The
largest principal component (PC) of the correlation matrix explains 46 percent of the total
variation. The remaining PCs are much smaller, though — even the second largest only
explains 16 percent of the total variation. Eight PCs are required to explain 90 percent
of the total variation in the IVs, which is perhaps a reasonable estimate of the number of
independent components in the data.

The common variation in the implied volatilities is much larger than the common varia-
tion in the underlying futures returns. The largest PC for the futures returns explains less

than half as much variation — 19 percent versus 46. In other words, while the individual

See also Bekaert, Hoerova, and Lo Duca (2013) for an analysis of the variation in risk premia in implied
volatilities.



futures prices may be driven by idiosyncratic shocks, or their correlations with each other
might change over time, masking common variation, investor uncertainty about futures re-
turns has a substantial degree of commonality across markets (similar to Herskovic et al.
(2016)), showing that we are not studying uncertainty that is purely idiosyncratic and iso-
lated to individual futures markets. The table below formalizes that result, reporting the
variation explained by the first PC for implied volatility, realized volatility (discussed below),

and the underlying futures returns, along with bootstrapped 95-percent confidence bands.

Fraction of variation explained by first principal component
Futures

1AY RV return
First PC (% explained) 45.9% 28.1% 19.1%

37.3% 23.7% 16.7%

95% Bootstrap CI
° P 195% 418%  21.2%

2.3 Relationship between implied volatility and macro uncertainty

indexes

Our ultimate goal is to understand the pricing of economic uncertainty. We therefore want
to check whether the implied volatilities in the futures markets we study are related to other
prominent measures of uncertainty. Figure 2 quantifies how well the 19 IVs can replicate
two well-known macro uncertainty indexes: the JLN index from Jurado, Ludvigson, and Ng
(2015) and the EPU index of Baker, Bloom, and Davis (2015) (see Section 5 for a more
detailed description of the indexes). Figure 2 plots the time series of the JLN indexes and
EPU index against the fitted values from their projection onto the 19 implied volatilities. The
right-hand panels plot the pairwise correlations of the implied volatilities in the individual
markets with the fitted uncertainty. For financials, the correlation with S&P 500 implied
volatility is 97 percent. The next highest correlation is only 68 percent, for Treasury bonds.
So figure 2 shows that fitted financial uncertainty is very nearly equivalent to S&P 500
implied volatility.!?

The second row plots fitted uncertainty for real variables. In this case, gold, copper,

crude oil, and heating oil are the most important contributors. The third row shows similar

12The strong fit the S&P 500 implied volatility is not simply due to the fact that S&P 500 returns are
included in the JLN construction. The results are similar when all variables involving the S&P 500 index
(returns, dividends, etc.) are dropped.



results for the price component of JLN uncertainty. Uncertainty about the real economy and
inflation are therefore driven by similar factors, and those factors are notably distinct from
financial uncertainty, which shows why having a broad range of I'Vs, and looking at markets
beyond the S&P 500, is important.

The bottom panels plot results for the EPU index. The highest pairwise correlations are
with financial Vs, Treasuries, gold, the S&P 500, and currencies. That implies that the
EPU index measures a similar type of uncertainty as other financial uncertainty measures,

perhaps because news coverage often focuses on financial markets.!?

3 The cost of hedging uncertainty and volatility

In this section we present the main results of the paper: we estimate the cost of hedging
shocks to volatility and uncertainty using option portfolios.

We compute the cost of hedging a shock as the negative of the average excess return
(risk premium) on the portfolio that hedges that shock. We report all risk premia in terms
of Sharpe ratios, which reveal the compensation for bearing a risk (or the cost of hedging
it) per unit of risk, and are therefore more easily comparable across markets. The option
returns are highly skewed, so an investor here would care about more than just the Sharpe
ratio; we use it simply as a device for holding effective leverage constant across markets. For
reference, the historical Sharpe ratio of US equities in our sample is 0.52.

We estimate risk premia for implied and realized volatility using a standard linear factor
model, and we use straddle returns of different maturities as test assets. Typical factor
models use a small number of aggregate factors. Here, though, we are interested in the
price of risk for shocks to all 19 types of uncertainty. We therefore estimate market-specific
factor models. This is similar to the common practice of pricing equities with equity-specific
factors, bonds with bond factors, currencies with currency factors, etc.!4

The cost of hedging a risk has a simple but important economic interpretation: it mea-
sures the extent to which the risk is “bad” with respect to state prices or marginal utility.
Consider a factor X and an asset with returns Ry that hedges it, in the sense that Rx varies
one-for-one (and is perfectly correlated) with innovations to X. Then if M represents the

stochastic discount factor,

|:RX,t+1 — Ry (1)

stdy (Rxt+1)
13To account for possible overfitting due to the fact that we have 19 explanatory variables, we experimented

with lasso and variable selection based on information criteria. The results were highly similar in all cases.
14The analysis is similar to those of Jones (2006) and Constantinides, Jackwerth, and Savov (2013).

X1 — B X
] = —Cov (Mt+1 — EyMiyq, ar ! Hl) Rf>

Stdt (Xt+1)
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where Ry is the gross risk-free rate, which we treat as constant for the sake of exposition,
E; is the expectation operator, and std; is the standard deviation conditional on date-t
information. The equation says that the negative of the risk premium on a portfolio that
hedges the risk X measures the covariance of innovations in X;,; with state prices. More
generally, when the correlation between Rx and innovations in X is less than 1, E [Rx — Ry]
measures the covariance of state prices with the part of innovations to X that is spanned by
Rx. So if the premium E [Rx — Ry] is negative, times when Ry (and hence X)) rise are bad
times, in which state prices are high. The factor model and subsequent analysis will deliver
estimated Sharpe ratios for the various risk factors we study.

Finally, as we review in Online Appendix OA.2; the risk premia estimated from linear
factor models correspond to the average excess returns of portfolios that isolate each risk
(that is, each portfolio has beta of 1 with respect to one risk factor, and 0 with respect
to all other factors). These portfolios are precisely those portfolios that allow investor to
change risk exposure to any factor and that factor only; we refer to them as factor-hedging

portfolios.

3.1 Method

3.1.1 Factor model specification

For each market we estimate a time-series model of the form

2
Timt = Qin + 53?”%;1 + ﬁﬁé (%::1) Z%{V[AV]Z—E/LE + Eints (2)
where f;; is the futures return for underlying ¢ and AIV;, is the change in the five-month
at-the-money implied volatility for underlying . r;,, is a return on each of the N test assets
(straddles and strangles, described in greater detail below).

The underlying futures return f;; controls for any exposure of the test assets to the
underlying, though in general that loading will be small, given that we use as test assets
portfolios with payoffs that are symmetric in the value of the underlying. Much more im-
portant is the fact that straddles and strangles have nonlinear exposures to the futures
return. (fi¢/1 Vi,t_l)Q captures that nonlinearity. 61{ Z will be interpreted as the exposure
of the options to realized volatility.!> Finally, the third factor is the change in the at-the-

money implied volatility for the specific market at the five-month maturity, representing an

15The results are similar when the second factor is the absolute value of the futures return or when it is
measured as the sum of squared daily returns over the return period.
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uncertainty shock in that market.!

The three factors are scaled by lagged implied volatility for two reasons. First, this helps
control heteroskedasticity. Intuitively, the factors are measuring innovations in standard
deviation units, so that we are pricing based on how much the underlying moves relative to
what investors expected. The second reason will be demonstrated in the next section: it is
what the Black—Scholes model implies for the exposures of straddles and strangles. That is,
the option portfolios yield exposure to the scaled factors used here, rather than, for example,
the raw futures return (and raw futures return squared). So while the analysis in this section
does not rely on Black-Scholes, this scaling will be useful for interpreting the results.

We estimate a standard linear specification for the risk premia,

faf fi 258 fi \*\ . arvary ATV
where «;, is a fitting error, using standard two-step cross-sectional regressions. The 7y
coefficients represent the risk premia that are earned by investments that provide direct
exposure to the factors. Due to the scaling by standard deviations, the 4’s are the Sharpe

ratios of the hedging portfolios for each factor constructed using the test assets.!”

3.1.2 Test assets

Our main results are for two-week returns on straddles with maturities between one and
five months.!'® A straddle is a portfolio holding a put and a call with the same maturity
and strike; we specifically study zero-delta straddles, with the strike set so that the Black-
Scholes delta of the portfolio is zero. The final payoff of a zero-delta straddle depends on

16GSince the IVs may be measured with error, we construct this factor by regressing available implied
volatilities on maturity for each underlying and date and then taking the fitted value from that regression
at the five-month maturity.

"While fgt and AIV;; are nontradable factors, f;. itself is tradable, so we include it as a test asset,
yielding the additional restriction E [f;/IV;,_1] = v/ Std(fi+/IVis_1) (see Cochrane (2005)).

18Past work on option returns and volatility risk premia has examined returns at frequencies of anywhere
from a day (e.g. Andries et al. (2017)), to holding to maturity (Bakshi and Kapadia (2003)). The precision
of estimates of the riskiness of the straddles is, all else equal, expected to be higher with shorter windows.
On the other hand, shorter windows cause any measurement error in option prices (e.g. from differences
between settlement prices and true fair values or trade prices, or from simple data errors) to have larger
effects.

Some of the existing literature, beginning with Bakshi and Kapadia (2003), examines delta-hedged returns.
Even with delta hedging, the higher-order risk exposures of the straddles change substantially as the price
of the underlying changes over time.

Another alternative is to examine returns on synthetic variance swaps. Synthetic variance swap prices are
constructed using the full range of strikes, so they require much more data than straddles. The markets we
study do not all have liquid options at extreme strikes and multiple maturities, so we focus on straddles,
which just require liquidity near the money.
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the absolute value of the return on the underlying, meaning that they have symmetrical
exposures to positive and negative returns,. For the remainder of the paper, we refer to
zero-delta straddles simply as straddles (that is, we only work with zero-delta straddles).

Straddles give investors exposure both to realized and implied volatility. They are ex-
posed to realized volatility because the final payoff of the portfolio is a function of the absolute
value of the underlying futures return. But when a straddle is sold before maturity (as in
our case, since we use two-week holding period returns), the sale price will also depend on
expected future volatility, meaning that straddles can give exposure to uncertainty shocks.
Since the options in the straddle are at the money at inception, a straddle is the most liquid
zero-delta portfolio we can construct.

In principle, it is also possible to estimate the factor risk premia using other assets,
like stock or bond returns (e.g. Cremers, Halling, and Weinbaum (2015)). We focus on
option returns because they depend directly on realized volatility and uncertainty — which
is why they are used to construct implied volatility measures — whereas for other assets
the connection is less clear (many other factors affect their returns) and there could be
nontrivial problems with exposures shifting over time. We show below that under the simple

Black—Scholes benchmark, the factor loadings will be constant.

3.2 Empirical results
3.2.1 Hedging uncertainty shocks

The dotted red series in figure 3 plots estimated risk premia and confidence bands for the

. . . . B 2 ATV
realized and implied volatility factors —«; and ~;

>V respectively — using straddles as test

assets. Again, the risk premia should be interpreted as annualized Sharpe ratios, since they
are scaled to measure average annualized returns per unit of annualized standard deviation.
The top panel plots premia for implied volatility and the bottom panel realized volatility.
The boxes are point estimates while the bars represent 95-percent confidence bands based
on a block bootstrap.?

Across the top panel, implied volatility shocks carry zero or even positive premia. For
financials, the average Sharpe ratios tend to be near zero or weakly negative. The S&P 500
has a positive premium, consistent with results for variance swaps discussed extensively in

Dew-Becker et al. (2016). That result is not completely robust here, however — something we

19The bootstrap is constructed with 50-day blocks and 5000 replications. It is used to account for the fact
that the returns use overlapping windows. Hansen—Hodrick type standard errors are not feasible here due
to the fact that observations in the data are not equally spaced in time. The block bootstrap additionally
accounts for other sources of serial correlation in the returns, such as time-varying risk premia.
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discuss further below — but there is certainly no evidence of a significantly negative premium
for S&P 500 uncertainty. For the nonfinancials, on the other hand, all 14 sample Sharpe
ratios are actually positive, and five of those are individually statistically significant. Overall,
for only one out of 19 contracts, the British Pound, do we find a significantly negative Sharpe
ratio.

To formally estimate the average risk premia across contracts, we use a random effects
model, which yields an estimate of the population mean risk premium while simultaneously
accounting for the fact that each of the sample Sharpe ratios is estimated with error, and
that the errors are potentially correlated across contracts (see Appendix A.2).

For both nonfinancials and all markets overall, the estimated population mean Sharpe
ratio is statistically and economically significantly positive, while for financials it is close to
zero. The group-level means have the advantage of being much more precisely estimated
than the Sharpe ratios for the markets individually. They show that on average, instead of
there being a cost to hedging uncertainty shocks, the factor risk premium for uncertainty
shocks is actually positive. For nonfinancials, the average Sharpe ratio is 0.43, and the lower
end of the 95-percent confidence interval is 0.13. For the overall mean, the corresponding
numbers are 0.32 and 0.08, so the average Sharpe ratios are significantly positive in both
cases. The top panel of table 3 reports the estimated average Sharpe ratios for financials
and nonfinancials, and, in the third column, their difference, and shows that the difference
in risk premia between the two groups is not statistically significant.

The top panel of figure 3 contains our key results on the risk premium for uncertainty. It
shows that across the board, risk premia for uncertainty are indistinguishable from zero or, if
anything, somewhat positive. The results allow us to quantify the overall correlation between
uncertainty and marginal utility. For financial underlyings, including the S&P 500, the zero
or very weakly negative risk premium implies that the correlation is close to zero. For the
nonfinancial underlyings, which are closely linked to the JLN real and price uncertainty

series, the results imply that the correlation is positive.

3.2.2 Hedging realized volatility shocks

The bottom panel of figure 3 reports risk premia for realized volatility across the 19 markets,
representing our second main result. The numbers are drastically different from those for
IV. Whereas implied volatility has earned a zero or even positive premium, the realized
volatility premia are almost all estimated to be negative. For the S&P 500, this result is
well known and is referred to as the variance risk premium. The S&P 500 realized volatility

risk premium is most negative, at -1.26 — the premium for selling insurance against shocks
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to realized volatility is more than twice as large as the premium on the stock market over
the same period. For the other financial underlyings, the premium on realized volatility is
not statistically significantly negative. For the nonfinancials, 11 of 14 estimated premia are
negative (6 significantly).

Looking at the category means, in this case all three estimates — financials, nonfinancials,
and all assets — are negative. The values are on the edge of statistically significant for the
nonfinancials and the overall mean, with confidence bands just barely encompassing zero.
The point estimate for the overall mean Sharpe ratio is -0.26 and the upper end of the
95-percent confidence interval is 0.04. Those values are almost the same as what we obtain
for uncertainty, but with the opposite sign. As with uncertainty, table 3 shows that the
difference between financials and nonfinancials is not statistically significant.

In sum, in stark contrast to the results for hedging uncertainty, the bottom panel of
figure 3 shows that there has historically been, consistently across markets, an economically
significant cost to hedge realized volatility. Contracts that, rather than loading on changes in
implied volatility, load on actual realized squared returns, earn negative Sharpe ratios with
magnitudes up to twice as large as that for the overall stock market. So while uncertainty
is viewed as neutral or even good on average, realized volatility or jumps — the realization of

large squared returns — is viewed as mostly bad, for both financials and nonfinancials.

3.2.3 Goodness of fit

Figure 4 reports a scatter plot of realized returns on the various straddle returns against the
fitted returns from the model. The figure shows that there is a wide spread in realized returns
that the model is able to capture. In addition, there are no large outliers. Table OA.1 in the
Online Appendix reports the p-values of the x? test of the model based on the squared fitting
errors (bootstrapped following Constantinides, Jackwerth, and Savov (2013)). That test is
very stringent, especially when the fitting errors are small on average, since they are scaled
by their sample variance. That said, the test rejects in only three of the 19 markets. The
p-value for the S&P 500 is 0.22, similar to the one obtained by Constantinides, Jackwerth,
and Savov (2013). The fact that the model is rejected for only one of the 14 nonfinancials
suggests that the results for nonfinancials — where the differences in the pricing of implied and
realized volatility are most pronounced — should be most reliable. The test rejects for two of
the five financial underlyings, which implies that they are more likely to have specification

error.
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3.3 Interpretation of the results

How can realized volatility have a negative price of risk, while uncertainty has a positive
risk price? Key to understanding this distinction is noticing that realized volatility (which is
computed by squaring shocks) is strongly dominated by large price movements like jumps,
which our empirical results suggest tend to be bad for investors on average. So it is easy to
see how investors might dislike realized volatility, as it captures the occurrence of a large,
bad shock.

On the other hand, innovations in implied volatility are driven by changes in the perceived
uncertainty about good and bad potential events: so a higher probability of a bad jump will
increase uncertainty, but a higher probability of a good event (e.g., a new technology) will
also increase uncertainty. Our results show that on net, investors seem to perceive increases
in uncertainty as being associated with good states of the world.

Section OA.8 in the Online Appendix formalizes this idea, describing a simple extension
of the standard long-run risk model of Bansal and Yaron (2004) that is consistent with our
results on the pricing of both volatility and uncertainty shocks.

Finally, it is valuable to compare our analysis with some closely related past work. As
discussed above, both Constantinides, Jackwerth, and Savov (2013; CJS) and Cremers,
Halling, and Weinbaum (2015; CHW) also examine the pricing of uncertainty and realized
volatility in the S&P 500 using factor models. While we cannot compare our full range of
results with theirs, we can at least see how those for the S&P 500 compare.

The analysis of CJS is closest to us, as they also use option portfolios as test assets. In
table 8, they report a premium of approximately zero for shocks to uncertainty and a large
negative premium for realized volatility for the S&P 500. So consistent with us, they find
much stronger pricing of realized than implied volatility, though their uncertainty premium
is less positive. CHW, instead, use the cross-section of equities as their test assets and find
a more strongly negative premium for uncertainty. However, they also report returns on an
uncertainty hedging portfolio, which aligns very closely with our analysis in the next section
(see their table 1). In that case, their results are quantitatively highly similar to ours. We

discuss this observation further below.

3.4 Is realized volatility about jumps? Evidence from strangles

Similar to others (e.g. Cremers, Halling, and Weinbaum (CHW; 2015)), we have argued
thus far that the exposures to squared returns on the underlying — or gamma — represent

exposure to jump risk. While CHW focused on straddles, we further test the hypothesis that
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the premia are for jumps by examining returns on strangles. A strangle is, like a straddle,
a portfolio long a put and a call, with the delta set to zero here by construction. However,
in the case of a strangle, the two options are out-of-the-money, with different strikes, rather
than both having the same strike. So whereas the final payoff of a straddle depends on the
absolute value of the change in the underlying, a strangle only pays off if the underlying moves
sufficiently far from its initial value (with that required distance being a choice variable).

We examine returns on strangles where the put and call strikes are 1 standard deviation
unit (scaling by time to maturity) from the forward price when the portfolio is formed, so
they only have positive payoffs at maturity if the underlying moves further than that. As
with the straddles, we examine two-week returns.

Figure 5 replicates figure 3 for the case of strangles. For the uncertainty risk premia, the
results are qualitatively and quantitatively similar to those for straddles: for financials the
premium is close to zero, and for nonfinancials it is 0.42.

It is for the RV /gamma risk premia that we find a substantial difference, representing
our third main result. Across the various markets, the premia are generally twice as large
for strangles as for straddles. Every single point estimate is now negative, and only one
confidence band contains zero. For financial underlyings, the average premium is now sta-
tistically significant, at -1.54. For nonfinancials and all assets combined, the means are both
-1.48 and -1.5 respectively.

These results provide clear evidence that it is really the tail of the distribution that drives
the RV results. The finding that deep out-of-the-money options have the largest premia is
well known for the S&P 500. This paper is novel for showing that the relationship of the
gamma premium with moneyness in fact holds across all the markets that we study (and it
is strikingly different from the patterns on uncertainty).

To sum up, figures 3 and 5 contain our three main results. Pervasively across markets,
premia related to vega (uncertainty) are zero or positive, while premia for gamma (jump
risk) are significantly negative. Furthermore, the jump risk premia are largest for out-of-
the-money options. Economically, the results show that it is periods with extreme shocks —
realized volatility or jumps — that investors are averse to, rather than simple increases in

forward-looking uncertainty.

4 Theoretical risk exposures of straddles and strangles

We argued heuristically above that straddles and strangles are natural test assets for a factor

model involving realized and implied volatility since they have zero delta and payoffs that
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are convex in the underlying return. This section formalizes that intuition by calculating
the theoretical exposures of options of different maturities to those shocks, following the
analysis of Cremers, Halling, and Weinbaum (2015). Similar to them, we then show that we
can construct replicating portfolios that, under the theory, should provide direct exposure
to shocks to either implied or realized volatility. Formally, under the Black-Scholes model,
one portfolio has positive vega and zero gamma, and the other has positive gamma and zero
vega. These portfolios give an alternative, and in some sense more direct, way of measuring

the risk premia.

4.1 Return exposures

The exposures of the portfolios studied above to the risk factors we use in our linear factor
model can be approximated theoretically using the Black—Scholes model, as in Coval and
Shumway (2001), Bakshi and Kapadia (2003), and Cremers, Halling, and Weinbaum (2015).
Online Appendix OA.3 shows that the partial derivatives of the zero-delta straddle and
strangle return with respect to the underlying futures return, f, its square, and the change

in volatility, can be approximated as
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where r,,; is the return on date t of a straddle or strangle with maturity n, f; is the return
on the underlying future, o, is the implied volatility of the underlying, and A is the first-
difference operator.?°

It is perhaps surprising at first that the exposures are the same for both straddles and
strangles. Intuitively, the two types of portfolios have the same exposures up to the second
order — where they differ is in their higher-order exposures, which are naturally larger for
the strangles. The first partial derivative says that the straddles and strangles have close
to zero local exposure to the futures return. The second line says that the exposure of
the options to squared returns on the underlying — realized volatility — is approximately

inversely proportional to time to maturity. The third line shows that they are also exposed

20We ignore here the fact that options at different maturities have different underlying futures contracts.
If that elision is important, it can be expected to appear as a deviation of the estimated factor loadings from
the predictions of the approximations (4)—(6).
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to changes in expected future volatility, through %, and that exposure is approximately
constant across maturities.

To see how the risk exposures differ in their higher order terms, figure OA.4 in the Online
Appendix plots the return on a straddle and a 1-standard-deviation strangle as a function
of the change in the price of the underlying. One can see how the two curves are not just
tangent at zero, but that they have the same curvature, consistent with having the same
second derivative, as in equation (5). They only begin to difer noticeably as the returns get
extreme. So straddles and strangles have equal local exposures to the underlying, but in the
tails, e.g. in response to jumps, strangles become more sensitive. This shows why strangle

returns help isolate the extra premium earned for exposure to tail risk.

4.2 Replicating portfolios

Cremers, Halling, and Weinbaum (2015) show that the implied sensitivities in (4)—(6) give a
method for constructing portfolios that the Black—Scholes model says should give exposures
only to realized volatility — (f,./o,—1)> — or implied volatility, measured by A, /oy_1. The

method is to construct, for each market, two portfolios,

5
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where the approximations follow from equations (4)—(6).2! Throughout this section, capi-
talized RV and IV refer to the levels of realized and implied volatility, while lower-case rv
and iv refer to the associated portfolio returns. We use the one- and five-month options to
construct the portfolios since it is exactly five-month implied volatility that is priced in the
main analysis. The v portfolio is dominated by an investment in the five-month options,
with just a small short position in the one-month options. In that sense, the iv portfolio is
a rather direct claim on exactly the implied volatility priced in the factor model.

The purpose of constructing these portfolios is to give a simple and direct method of
measuring the premia associated with realized and implied volatility that does not require
full estimation of the factor model. If the loadings used to construct the portfolios are correct,
this method will also be more efficient. On the contrary, if the assumptions of the model are

not correct, then the results will be biased (whereas the factor model will still be correct,

2INote that equation (5) gives the second derivative, which has weight 1/2 in the Taylor approximation.
So the loading on the squared future return for a straddle of maturity n is (2n)~!, which implies that the
coefficient for (7) is 5/24.
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as it estimates the risk exposures instead of using the ones implied by the model). There is
thus a bias/variance trade-off between the factor model, which requires fewer assumptions
but will have greater estimation error, and the replicating portfolios, which require stronger
assumptions but will have less estimation error.

The key concern, then, is how accurate the Black—Scholes-implied loadings are. Figure
OA.2 and table OA.2 in the Online Appendix show that the theoretical predictions for the
loadings are fairly accurate (though not perfect) empirically. Online Appendix OA.3 also
examines the accuracy of the Black—Scholes approximation for returns in a simulated setting.

Table OA.2 shows that the biggest deviations from the model-implied loadings are for
the S&P 500 v portfolio. In that case, there is a large positive loading on realized volatility
— a GARCH effect — and a large negative loading on the underlying futures return — the
leverage effect. Both should be expected to bias the return on the iv portfolio down relative
to the estimated implied volatility factor loading from above. The effects are three times
larger for the S&P 500 than for any other market. That suggests that for measuring pricing
of S&P 500 uncertainty, in particular, it is best to use the factor model, as in Constantinides,
Jackwerth, and Savov (2013). For all other markets, instead, the Black-Scholes assumptions
appear relatively accurate, so we would expect the results to line up well with those of the
factor model.

Note that even though the rv and v portfolios theoretically load on separate risk factors,
they need not be uncorrelated. It is well known from the GARCH literature (e.g. Engle
(1982) and Bollerslev (1986)) that in many markets, innovations to realized volatility are
correlated with innovations to implied volatility. Table 4 reports the correlations between
the rv and v returns in the 19 markets. GARCH effects appear most strongly for the
financial underlyings and precious metals, where the average correlation is 0.44. For the
other nonfinancial underlyings, the effects are much smaller, and the correlation between
the rv and 7v returns is only 0.03 on average (it is 0.09 on average across all nonfinancials).
So for the nonfinancials, innovations to realized and implied volatility returns are essentially
independent on average. These weak correlations are valuable for the identification, since
they show that surprises in realized and implied volatility are far from the same and can be

hedged separately using the rv and v portfolios.
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4.3 Risk premia

4.3.1 Straddles

The solid blue series in the two panels of figure 3 report annualized Sharpe ratios for the rv
and iv portfolios constructed from straddles in the 19 markets. As with the factor model,
we begin by focusing on the straddle returns because they use more liquid near-the-money
options.

The results in figure 3 for the rv and iv portfolios are highly similar to those for the
factor model. The iv portfolios earn returns close to zero on average for the financial under-
lyings and returns that are consistently positive for the nonfinancial underlyings. For the
nonfinancials, the average Sharpe ratio for the v portfolios is again statistically significantly
positive. As expected, since the iv portfolios are formed using stronger assumptions, the
standard errors for the risk premia are tighter than for the factor model.

The bottom panel of table 3 summarizes the estimates for the realized and implied
volatility risk premia for financials and nonfinancials computed using the v and v portfolios,
and also reports tests for whether the two are different. In all cases, the premia for the
financials are insignificant while those for the nonfinancials are insignificant. However, note
that there are fewer financial underlyings, limiting our statistical power. The difference
between financials and nonfinancials itself is not significant — so we cannot actually say that
there is strong evidence for a difference between the two in three out of four cases. The only
case where the difference is statistically significant is for the Sharpe ratio on the iv portfolio.

That difference appears to be driven largely by the fact that the return on the S&P 500
1 portfolio is very different from the estimated risk premium for implied volatility from the
factor model. In fact, the confidence bands do not even overlap. This result is driven by the
fact that there are much stronger GARCH effects in the S&P 500 than the other underlyings
that we study, creating a bias, as discussed above (see table OA.2 showing that the S&P
500 v portfolio actually loads strongly on realized volatility). We thus place relatively less
trust in the results from the rv and v portfolios (as opposed to the results from the factor
model) for the S&P 500 than the other underlyings, for which there is very strong agreement
between the factor model and the v portfolio returns. Even in the case of the S&P 500,
though, the premium for uncertainty shocks is not statistically significantly negative.

The Sharpe ratios for the rv portfolios are also highly similar to the estimated risk premia
on realized volatility in the factor model (even for the S&P 500). The financial underlyings
other than the S&P 500 again have premia generally close to zero, while the S&P 500 and
the nonfinancials have consistently negative premia.

The returns on the rv and v portfolios for the S&P 500 can be compared to those
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reported in table 1 of Cremers, Halling, and Weinbaum (2016). For their analog to our
rv portfolio, they obtain a Sharpe ratio of -0.9, compared to -1.2 in our case, while for
their analog to the iv portfolio, they report a Sharpe ratio of -0.5, compared to -0.2 here.
In both cases, the confidence bands for our estimates easily contain theirs. We thus obtain
substantial agreement with the findings of CHW for returns on option portfolios. Our results
differ from theirs in two key ways. First, we focus on factor models using options as test
assets, instead of equities. We choose to use options, similar to Constantinides, Jackwerth,
and Savov (2013), because they have risk exposures very directly tied to uncertainty and
volatility, whereas equity returns have many other risk exposures that have been explored
in the literature. Second, obviously, we explore the pricing of options in a wide range of
markets, not just the S&P 500.

4.3.2 Strangles

The results for strangles are again consistent with those for straddles, but more extreme.
In figure 5, as in figure 3, the point estimates and confidence bands from the factor model
(red) and the rv and v portfolios (blue) are similar, with the model-based rv and iv port-
folios again having narrower confidence intervals, showing that the results are robust to the
estimation method.

We again find that the strangles have much more negative jump/gamma premia than
the straddles. Since we showed above that the exposures of the strangles and straddles are
the same up to second order, this section clearly indicates that it is the difference in higher

order exposures of the different strategies that drives the larger premia for strangles.

4.4 Summary

The results in this section are useful for three reasons. First, they show that our results are
not driven by some hidden detail of the factor model estimation. The rv and v portfolios are
simple to construct and yield highly similar results to the factor model, both for straddles
and strangles. So the three key findings, zero or positive premia for uncertainty, substan-
tially negative premia for realized volatility, and even larger premia for realized volatility for
strangles, appear to be robust.

Second, the replicating portfolios help clarify exactly what the source of identification
is in the factor model. The options have exposures to implied and realized volatility that
differ across maturities, so including a panel of multiple maturities allows us to separately

measure their premia.
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Finally, by analyzing the risk exposures of the options, we can link the factor model
estimates back to widely studied and applied features of options — their greeks. The estimate
of the price of shocks to implied volatility from the factor model is essentially identical to
the Sharpe ratio on a portfolio with positive vega and zero gamma, while the estimate of
the price of shocks to realized volatility is almost the same as the Sharpe ratio on a portfolio

with positive gamma and zero vega.

4.5 Combined portfolios

As we discussed in section 2.3, the uncertainty in our 19 markets is related to various measures
of aggregate uncertainty. It is then natural to ask what the cost of hedging is for aggregate
uncertainty. A simple way to do that is to buy all the v or rv portfolios simultaneously.
We focus on just the straddles here since they are most liquid and thus most feasible for an
investor to hold. Since tables 1 and 2 show that realized and implied volatility are imperfectly
correlated across markets, even larger Sharpe ratios can be earned by holding portfolios that
diversify across the various underlyings. Table 5 reports results of various implementations
of such a strategy. Looking first at the top panel, the first row reports results for portfolios
that put equal weight on every available underlying in each period, the second row uses only
nonfinancial underlyings, and the third row only financial underlyings. The columns report
Sharpe ratios for various combinations of the rv and v portfolios. The first two columns
report Sharpe ratios for strategies that hold only the rv or only the v portfolios, the third
column uses a strategy that is short rv and long iv portfolios in equal weights, while the final
column is short rv and long v, but with weights inversely proportional to their variances
(i.e. a simple risk parity strategy).

The Sharpe ratios reported in table 5 are generally larger than those in figure 3. The
portfolios that are short rv and long v are able to attain Sharpe ratios above 1. The largest
Sharpe ratios come in the portfolios that combine rv and iv, which follows from the fact that
they are positively correlated, so going short rv and long iv leads to internal hedging. All of
that said, these Sharpe ratios remain generally plausible. Values near 1 are observed in other
contexts (e.g. Broadie, Chernov, and Johannes (2009) for put option returns, Asness and
Moskowitz (2013) for global value and momentum strategies, and Dew-Becker et al. (2017)
for variance swaps).

The portfolios that take advantage of all underlyings simultaneously seem to perform
best, presumably because they are the most diversified. While holding exposure to implied
volatility among the financials earns effectively a zero risk premium, it is still generally

worthwhile to include financials for the sake of hedging.
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Finally, the bottom panel of table 5 reports the skewness of the various strategies from
above. One might think that the negative returns on the rv portfolio are driven by its
positive skewness, but the iv portfolio also is positively skewed and has positive average
returns. So the degree of skewness does not seem to explain differences in average returns

in this setting.

5 Hedging uncertainty indexes

The results so far give the cost of directly hedging shocks in commodity markets. This
section examines how options can be used to hedge shocks to macro uncertainty indexes.
Section 2.3 showed that the commodity IVs do a good job of spanning the macro uncertainty
indexes. We now discuss those indexes in more detail and examine the cost of hedging both
the implied and realized parts of macro volatility.

The JLN index is developed in a pair of papers by Jurado, Ludvigson, and Ng (JLN;
2015) and Ludvigson, Ma, and Ng (2017). We follow their construction methodology and
further extend it to yield separate measures of uncertainty that pertain to financial mar-
kets, real activity, and goods prices, with the latter two also being combined into an overall
macroeconomic uncertainty index.?? The goal of the JLN framework is to estimate uncer-
tainty on each date, o2. The method can also be extended to create a realized volatility
index.?? We refer to the JLN uncertainty indexes by JLNU and realized volatility indexes
by JLNRV.

The Economic Policy Uncertainty (EPU) index of Baker, Bloom, and Davis (2015) is
constructed based on media discussion of uncertainty, the number of federal tax provisions
changing in the near future, and forecaster disagreement. Unlike JLN, there is no distinc-
tion in this case between volatility and uncertainty, so we treat EPU as measuring only
uncertainty.

Figure 2 shows that the 19 IVs span most of the variation in the JLN and EPU uncertainty

22The construction involves two basic steps. First, realized squared forecast errors are constructed for
280 macroeconomic and financial time series. 134 macro series are from McCracken and Ng (2016), while
the remaining financial indicators are from Ludvigson and Ng (2007). Our analysis uses code from the
replication files of JLN. The macro price series are defined as those referring to price indexes, and the real
series are the remainder of the macro time series. Denoting the error for series ¢ as €;+, there is a variance
process, 07, = E [¢7,]. So &7, constitutes a noisy signal about o7,. JLN then estimate o7, from the history
of 5127t using a two-sided smoother and create an uncertainty index as the first principal component of the
estimated 0’1-27t. For the component indexes, we take the first principal component of the 0127t corresponding
to the relevant group of indicators.

23This is done by taking the first principal component from the cross-section of the E%ﬁt in a given month,
instead of the o7,.
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indexes. We can then measure risk premia associated with those indexes by constructing
hedging portfolios using our straddles. For each index, we obtain the weights for the hedging
portfolio from the coefficients of the projection we presented in Section 2.3. Specifically, for

each uncertainty index j, we estimate the regression

JINU! = a+ ) W1V, +ej, (9)

We then use the risk premia estimated in the factor model to calculate a premium for
hedging the JLN indexes. In particular, we construct a hypothetical portfolio that has expo-
sure bf to AIV;;/1V;,;_1. The mean return on that portfolio can be calculated from equation
(3), while the standard deviation is obtained from the covariance matrix of AIV;,/IV;;
across i (again weighting by bf ). The same method also yields a risk premium for the EPU
and JLN RV indexes (see Online Appendix figure OA.1 for the analog of figure 2 for realized
volatilities).

The right-hand section of figure 3 (red lines) reports the Sharpe ratios for straddle port-
folios hedging the EPU and JLN indexes, computed using the estimates from the factor
models. Since those hedging premia are constructed combining the individual factor premia,
it is not surprising that they are similar. In all three cases, the risk premium for JLN indexes
— financial, macro, and price uncertainty — is positive, in one case statistically significantly.
Furthermore, the confidence bands rule out economically large negative premia — the lowest
confidence band only runs to -0.32. For EPU we find a point estimate of approximately zero
(-0.03), though a confidence band that runs to -0.49.

The right-hand section of the bottom panel of figure 3 reports the returns from the
JLN realized volatility hedging portfolios (again, the red lines use the risk premia estimates
from the factor model). Again, consistent with the fact that the RV risk premia themselves
are consistently negative, hedging the JLN indexes for realized volatility historically has a
positive cost. For all three subindexes, the risk premia are very negative, with the Sharpe
ratios for financial, real, and price volatility at -1.15, -0.62, and -0.65, all three of which are
statistically significant. So the conclusions from hedging the JLN and EPU indexes are highly
similar to those in the main analysis, providing further evidence that in the macroeconomy,
it is realized volatility that is priced, rather than uncertainty about the future. The blue
lines in the figure, that use the estimates from the rv and v portfolio, show similar results,
with the uncertainty Sharpe ratios slightly lower but still statistically indistinguishable from
zero, and the realized volatility premia strongly negative. Figure 5 shows that the results

for straddles are again similar, with hedging realized volatility in this case again carrying a
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more negative premium.

6 Robustness

This section examines some potential concerns about the robustness of the results.

6.1 One-week holding period returns

Our main analysis is based on two-week holding period returns for straddles, which strike
a balance between having more precise estimates of risk premia and reducing the impact of
measurement error in prices. We have repeated all of our analysis using one-week holding
period returns, and find very similar results. Online Appendix figure OA.6 is the analog of
figure 3, but constructed using one-week returns. The results are qualitatively and quanti-

tatively similar to the baseline.

6.2 Split sample and rolling window results

To address the concern that the results could be driven by outliers (though note that there
would need to be outliers in all 19 markets), figures OA.7 and OA.8 replicate the main results
in figure 3, but splitting the sample in half (before and after June 2000). The confidence
bands are naturally wider, and the point estimates vary more from market to market in the
two figures. Nevertheless, the qualitative results are the same as in the full-sample case,
showing that realized volatility earns a negative premium while the premium on implied
volatility is positive.

To further evaluate the possibility that the results are driven by a small number of
observations, figure OA.9 plots Sharpe ratios for the rv and iv portfolios in five-year rolling
windows for each of the 19 markets, as well as for the equal-weighted portfolios of all 19
markets. The sample Sharpe ratios are reasonably stable over time. In no case do the
results appear to be driven by a single outlying period or episode. Note that these results
are not informative about variation in the conditional risk premium; with a five-year window,
the standard error for the Sharpe ratios is 0.45, so even if the true conditional Sharpe ratios
are constant, the five-year rolling estimates should display large amounts of variation over

time.
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6.3 Alternative maturities

Our main results use the five-month maturity for implied volatility, both in the factor model
and as the second leg in the rv and iv portfolios. Figure OA.10 in the Online Appendix
replicates the analysis using two-month implied volatility instead in both cases. The results
are qualitatively and quantitatively similar to the main specification. Note that the GARCH
effects — that bias the estimates for the v portfolio risk premium (blue) in the top panel
downward relative to the estimates from the factor model (red) — are stronger when using
2-month IV instead of 5-month IV (see the loadings of the iv portfolio on realized volatility
in table OA.4).

To help understand why the maturity choice does not have strong effects, the top panel of
table OA.3 in the Online Appendix reports loadings of the rv portfolio on changes in implied
volatility at maturities of one to five months. In all cases, the coefficients are close to zero —
no larger than 0.1 — indicating that the exposures to implied volatility at any maturity are
economically small (especially in comparison to the loading on realized volatility, which can
be seen from table OA.2 to be closer to 1). The bottom panel shows the same loadings, but
for the RV-hedging portfolio built using the factor model (a portfolio that by construction
has loading 1 on RV and 0 on 5-month IV, as the last column of the table highlights — see
Online Appendix OA.2 for more details).

6.4 Weighted least squares

Johnson (2019) argues that there can be efficiency gains from weighting by implied volatility
in estimating risk premia. We explore that in figure OA.11 in the Online Appendix, which
reports the risk premia (computed with the factor model) with and without weighting by
implied volatility. Weighting drives most of the risk premia to be less negative or more
positive, but the patterns all remain qualitatively and quantitatively similar. The premium

for implied volatility shocks becomes even more strikingly positive.

6.5 Pricing the independent parts of realized and implied volatil-
ity

The main results above report returns associated with assets that hedge innovations to

realized and implied volatility. Table 4 shows that those returns are positively correlated:

months with increases in realized volatility also tend to have increases in implied volatility.

A natural question is what would happen if we were to construct a portfolio that loaded

on the independent part of those returns, e.g. an increase in implied volatility holding
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realized volatility fixed. Section OA.6 in the Online Appendix reports an SDF-based analysis
that prices the independent components and shows that the results are similar to the main

specification (see figure OA.12).

6.6 Oil and gas equity options

Since the stock returns of firms in the energy sector are naturally exposed to changes in
energy prices, it is natural to ask whether returns on their options behave similarly to what
we report for oil and gas futures options. We obtain data from Optionmetrics on firms
with an Optionmetrics industry code between 120 and 125, corresponding to the energy
sector. We then construct rv and v portfolios for those firms using the same methods as
for the main analysis, again with maturities of one and five months. We construct two-week
returns and sum them across whatever firms are available on each date, weighting by market

capitalization. The Optionmetrics data covers the period 1996-2018.

Sharpe ratio

) -0.56
95% CI  [-1.02,-0.10]
) 0.05

95% CI  [-0.42,0.52]

The Sharpe ratios for the rv and v portfolios for oil and gas companies are above. Similar
to the main results, we obtain a significantly negative premium on realized volatility and a
marginally positive premium on implied volatility. The premium for the iv portfolio for oil
and gas companies is less positive than for crude oil futures options, but more positive than
for S&P 500 index options. In other words, the results imply that options on oil and gas
companies behave as though they are a mixture of options on the S&P 500 and on crude oil,
which is not an unrealistic desciption of oil and gas companies.

Because of the relatively short sample compared to the main results, this analysis has
relatively low power. The point estimate for rv is outside the confidence band for v and
vice versa, but their confidence bands do overlap and the Sharpe ratios are not statistically
significantly different from each other. That also illustrates the benefit in the main anal-
ysis of using information from many different markets to help increase estimation power.
Nevertheless, the results in this section are consistent with our main findings, if statistically
weaker. Section OA.7 further extends these results by examining options on energy sector

ETFs and finds similar results.
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6.7 Liquidity

If the options used here are highly illiquid, the analysis will be substantially complicated for
three reasons. First, to the extent that illiquidity represents a real cost faced by investors
— e.g. a bid/ask spread — then returns calculated from settlement prices do not represent
returns earned by investors. Second, illiquidity itself could carry a risk premium that the
options might be exposed to. Third, bid/ask spreads represent an added layer of noise
in prices. The identification of the premia for realized volatility and uncertainty depends
on differences in returns on options across maturities, so what is most important for our
purposes is how liquidity varies across maturities. This section shows that the liquidity of
the straddles studied here is generally highly similar to that of the widely studied S&P 500
contracts traded on the CBOE, and the liquidity does not appear to substantially deteriorate
across maturities. It is important to note that measuring trading costs is nontrivial, especially
for complex orders, and bid/ask spreads are not necessarily the best measure of the true cost
of liquidity. See Muravyev and Pearson (2020) for a detailed analysis.

While a long history of bid /ask spreads is not available to us, we obtained posted bid/ask
spreads for the options closest to the money on Friday, 8/4/2017 for our 19 contracts plus the
CBOE S&P 500 options at maturities of 1, 4, and 7 months.?* Those spreads are plotted in
figure OA.13. For the majority of the options, the spreads are less than 3 percent, consistent
with the 4.1-percent bid/ask spread for one-month S&P 500 options at the CBOE. Across
nearly all the contracts, the posted spreads again decline with maturity, and for 10 of the
19 contracts the one-month posted spreads are nearly indistinguishable from that for the
S&P 500, which is typically viewed as a highly liquid market and where incorporating bid-
ask spreads generally has minimal effects on return calculations (Bondarenko (2014)). Note
that the decline with maturity is relative to the price of the options themselves, not in
absolute terms.

Figure OA.13 yields two important results. First, it shows that the liquidity of the
straddles is reasonably high, in the sense that posted spreads are currently relatively narrow
in absolute terms for most of the contracts and that they compare favorably with spreads
for the more widely studied S&P 500 options traded at the CBOE. Second, liquidity does
not appear to deteriorate as the maturity of the options grows, and in fact in many cases
there are improvements with increasing maturities, again consistent with CBOE data.

Section OA.3.5 in the Online Appendix reports statistics for volume across maturities,

showing that the markets are generally fairly similar. Section OA.3.6 reports an additional

24Longer histories of bid/ask spreads for options are available for purchase from the CME (at significant
cost), which would allow for these results to be extended.
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robustness test that measures returns using a method that is robust to certain types of
measurement errors in prices, showing that the main results are essentially identical.

Finally, it is useful to note that while the liquidity of option markets changed significantly
in the last 30 years, the patterns in risk premia for the rv and v portfolios appear stable over
time (see, for example, the rolling Sharpe ratios of figure OA.9), suggesting that liquidity is
not the main driver of our results.

Even though the liquidity is similar across many of the markets, one might still ask how
trading costs affect the returns we have been studying. Any trading cost will lower the return
of a portfolio, regardless of whether an investor is long or short. By studying returns based
on settlement prices, we are essentially looking at the return averaged across what the buyer
and seller receive. For example, if the return on a portfolio based on settlement prices is 10
percent and there are total trading costs to each side of 1 percent, then the buyer earns a
return of 9 percent while the seller has a loss of 11 percent. Looking at prices is therefore

natural for illustrating the return that the average investor sees.

7 Conclusion

This paper studies the pricing of uncertainty and realized volatility across a broad array of
options on financial and commodity futures. Uncertainty is proxied by implied volatility
— which theoretically measures investors’ conditional variances for future returns — and a
number of uncertainty indexes developed in the literature. Realized volatility, on the other
hand, measures how large realized shocks have been. In modeling terms, if £, ~ N (0, 0?),
uncertainty is o2, while volatility is the realization of £7.

A large literature in macroeconomics and finance has focused on the effects of uncertainty
on the economy. This paper explores empirically how investors perceive uncertainty shocks.
If uncertainty shocks have major contractionary effects so that they are associated with high
marginal utility for the average investor, then assets that hedge uncertainty should earn
negative average returns. On the other hand, the finance literature has recently argued that
in many cases uncertainty can be good. For example, during the late 1990’s, it may have
been the case that investors were not sure about how good new technologies would turn out
to be.

The contribution of this paper is to construct hedging portfolios for a range of types
of macro uncertainty, including interest rates, energy prices, and uncertainty indexes. The
cost of hedging uncertainty shocks reveals the relative importance of good and bad types of

uncertainty. Furthermore, using a wide range of options is important for capturing uncer-
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tainty about the real economy and inflation, as opposed to just about financial markets. The
empirical results imply that uncertainty shocks, no matter what type of uncertainty we look
at, are not viewed as being negative by investors, or at least not sufficiently negative that it
is costly to hedge them. Financial uncertainty appears to be roughly equally split between
the good and bad types, while nonfinancial uncertainty is relatively more strongly driven by
good uncertainty — the cost of hedging nonfinancial uncertainty shocks is negative.

What is highly costly to hedge is realized volatility. Portfolios that hedge extreme returns
in futures markets — and hence large innovations in macroeconomic time series — earn strongly
negative returns, with premia that are in many cases one to two times as large as the premium
on the aggregate stock market over the same period. So what is consistently high in bad
times is not uncertainty, but realized volatility. Periods in which futures markets and the
macroeconomy are highly volatile and display large movements appear to be periods of high
marginal utility, in the sense that their associated state prices are high. This is consistent
with (and complementary to) the findings in Berger, Dew-Becker, and Giglio (2020), who
provide VAR evidence that shocks to volatility predict declines in real activity in the future,
while shocks to uncertainty do not.

Berger, Dew-Becker, and Giglio (2020) show that the VAR evidence and pricing results
for realized volatility are consistent with the view that it is downward jumps in the economy
that investors are most averse to. They show that a simple model in which fundamental
shocks are both stochastically volatile and negatively skewed can quantitatively match the
pricing of uncertainty and realized volatility, along with the VAR evidence. Similarly, Seo
and Wachter (2018a,b) show that negative skewness can explain the pricing of credit default
swaps and put options. This paper thus also contributes to the growing literature studying
the effects of skewness. In a world where fundamental shocks are negatively skewed, the
most extreme shocks — those that generate realized volatility — tend to be negative, which

can explain why realized volatility would be so costly to hedge.
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Figure 2: Fit to uncertainty indexes
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Figure 3: RV and IV portfolio Sharpe ratios and factor risk premia: straddles
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Note: Squares are point estimates and vertical lines represent 95-percent confidence intervals. The solid
series plots the Sharpe ratios for the rv and v portfolios. The dotted series plots the estimated risk premia
from the factor model. In both cases, all estimation uses straddles. The confidence bands for the rv and
tv Sharpe ratios are calculated through a 50-day 18ck bootstrap, while those for the factor model use
GMM standard errors with the Hansen—Hodrick (1980) method used to calculate the long-run variance.
The “Fin. mean”, “Non-fin. mean”, and “Overall mean” points represent random effects estimates of
group-level and overall means. The “JLN” and “EPU” points are for the portfolios that hedge those
indexes.



Figure 4: Cross-sectional fit of factor models
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Note: For each straddle of maturity 1 to 5 months, and for each of the 19 markets, the figure reports
the predicted risk premium against the realized average excess return. Predicted risk premia are obtained
estimating a linear factor model separately in each market.
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Figure 5: RV and IV portfolio Sharpe ratios and factor risk premia: strangles
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Note: See figure 3. This figure differs only in replacing the straddles with 1-sigma strangles.



Table 1: Pairwise correlations of implied volatility across markets

- -
g 2 3 - 3 & , £ 3 E
g - & . £ = ¢ & B ¥ 2 £ £ £ £ 2 5 3

v 3 & £ & & 5 8 5 = 2 8§ &8 & § 3 8 ¢

S&P 500 0.56

SwissFranc | 0.53 0.29

Yen 0.40 0.56 0.48

British Pound 0.45 0.40 | 0.75 0.45

Gold 0.52 0.57 021 0.28 0.37

Silver 0.42 034 019 029 034078

Copper 0.39 049 015 035 036 0.74 0.77

Crudeoil 0.42 0.63 025 039 027 054 031 048

Heatingoil ~ 0.41 0.64 0.23 036 0.23 0.51 0.28 0.51 05N

Naturalgas 0.11 0.44 -0.03 0.04 0.03 033 006 0.44 049 0.63

Corn 025 037 -0.11 014 0.11 050 056 0.58 022 0.18 0.11

Soybeans  0.22 0.35 -0.05 0.17 0.17 0.47 048 057 029 029 0.21 [J0}85

Soybean meal 0.28 0.33 -0.08 0.16 0.06 0.53 050 057 030 027 0.23 0.81 N0'54

Soybeanoil 031 030 0.0 012 023 0.48 049 056 026 029 023 073 0.89 1083

Wheat 0.38 042 001 019 0.10 0.62 062 060 034 031 0.17 084 077 0.75 064

Lean hog 029 042 -0.03 028 -0.10 027 0.16 035 0.40 047 040 029 037 039 038 0.36

Feeder cattle 0.45 0.35 0.11 0.16 0.07 0.40 0.51 0.50 0.31 0.34 0.13 0.48 0.47 0.50 0.48 0.52 043
Live cattle 0.51 0.28 0.24 0.18 0.07 0.38 0.41 0.45 0.32 039 0.26 0.32 0.33 0.43 0.49 0.43 0.47 0.84

Note: Pairwise correlations of three-month option-implied volatility across markets. The darkness of the
shading represents the degree of correlation.

Table 2: Pairwise correlations of realized volatility across markets

- o, 5 .
.§ o § g C 5 - r_& £ c g @ E
i 5 % 5 5 & 2 £ 5 EF £ £ 5 £ &
§ 3 ¢ 5 2 2 2 5 3 § 2 5§ % % % £ § %

RV [ % 2 > o [C] 2 [v] O T z o %) \ \ = = w

S&P 500 0.63

Swiss Franc 0.17 0.12

Yen 031 032 0.15

British Pound 0.43 0.36 0.24 0.31

Gold 0.44 0.47 0.15 024 0.31

Silver 0.42 0.43 0.15 0.22 0.27 0.65

Copper 0.52 0.51 0.11 0.24 0.43 0.50 0.53

Crudeoil 0.24 024 0.3 020 020 032 0.14 024

Heatingoil  0.20 0.22 0.04 0.14 0.5 030 0.11 0.15 093

Naturalgas 0.03 0.08 0.04 -0.04 0.00 0.05 -0.06 0.00 0.08 0.18

Corn 0.33 035 0.04 009 027 037 040 050 0.12 003 -0.04

Soybeans | 0.33 0.30 0.03 0.16 0.30 0.3 0.35 040 0.11 0.05 -0.07 [[0/74

Soybeanmeal 0.33 0.25 0.03 0.19 0.19 0.31 032 0.30 0.08 0.02 -0.06 0.68 No94N

Soybeanoil | 0.48 0.43 0.11 021 042 040 041 051 0.17 0.12 -0.04 067 0.88 0.72

Wheat 030 0.24 0.02 008 011 031 034 033 011 004 -0.08 0.63 051 0.47 047

Lean hog 0.12 0.12 0.08 020 -0.03 0.00 000 005 010 009 0.11 0.07 011 012 0.11 0.12

Feeder cattle 0.22 0.20 0.03 0.04 0.07 0.10 0.16 0.30 0.10 0.07 0.12 035 0.32 032 0.27 0.22 0.26
Live cattle 0.41 0.24 0.13 0.11 0.11 0.17 0.24 0.28 0.07 0.07 0.09 0.22 0.22 0.27 0.30 0.23 0.28 0.63

Note: Pairwise correlations of monthly realized volatility across markets. The darkness of the shading
represents the degree of correlation.
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Table 3: Risk premia for financials and nonfinancials, and their difference

Financials Nonfinancials Difference

Factor model RV -0.18 -0.29 0.11
[-0.63] [-1.62] [0.34]

\% 0.10 0.43 -0.32

[0.47] [2.82] [-1.28]

Replicating port. rv -0.25 -0.30 0.05
[[1.13] [-2.14] [0.18]

iv -0.02 0.34 -0.36

[-0.14] [2.95] [-2.02]

Note: The table reports the average risk premia for RV and IV risks, across financials (first column),
across nonfinancials (second column) and for the difference between the two groups (third column), with
corresponding t-statistics in square brackets. The top panel estimates the risk premia using the linear
factor model; the bottom panel estimates the risk premia as the average excess returns of the rv and v
portfolios.

Table 4: Correlations between rv and iv portfolio returns in each market

Std(rv) Std(iv) Corr(rv,iv)
S&P 500 0.03 0.08 0.48
T-bonds 0.03 0.08 0.01
CHF 0.04 0.08 0.63
JPY 0.04 0.08 0.61
GBP 0.04 0.07 0.41
Gold 0.04 0.12 0.48
Silver 0.04 0.08 0.45
Copper 0.03 0.10 0.03
Crude Oil 0.04 0.09 0.05
Heating oil 0.04 0.08 0.01
Natural gas 0.04 0.08 -0.17
Corn 0.04 0.08 0.06
Soybeans 0.04 0.09 0.17
Soybean meal 0.04 0.11 0.20
Soybean oil 0.04 0.09 0.21
Wheat 0.04 0.08 0.08
Lean hog 0.05 0.10 -0.24
Feeder cattle 0.05 0.10 0.03
Live cattle 0.04 0.08 -0.12

Note: The table reports, for each underlying, the standard deviation of the two-week returns to the rv
and iv portfolios, and their correlation.

42



Table 5: Portfolios of rv and v across markets

Panel A: Sharpe ratios rv+v

rv iv Equal weight Risk-parity
All underlyings -0.74 *** 0.49 ** 1.05 *** 0.90 ***
Nonfinancials -0.63 *** 0.62 *** 0.91 *** 0.90 ***
Financials -0.37 ** -0.04 0.42 *** 0.13
Panel B: Skewness rv+v

rv iv Equal weight Risk-parity
All underlyings 1.23 *** 1.82 *** -0.79 *** 1.05 ***
Nonfinancials 2,11 *** 1.55 *** -2.00 *** 0.75 ***
Financials 2.01 *** 2.91 *** -1.40 *** 2,19 ***

Note: Sharpe ratios and skewness of portfolios combining rv and iv portfolios across markets. For each
panel, the first row reports a portfolio constructed using straddles from all available markets on each date,
the second row using only nonfinancial underlyings, the third row only financial underlyings. Each column
corresponds to a different portfolio. The first column is an equal-weighted RV portfolio, the second is an
equal-weighted IV portfolio, the third is an equal-weighted long-short IV minus RV portfolio, and the last
is the same long/short portfolio but weighted by the inverse of the variance (risk-parity). *** indicates
significance at the 1-percent level, ** the 5-percent level, and * the 10-percent level.
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A.1 Data filters and transformations

The observed option prices very often appear to have nontrivial measurement errors. This
section describes the various filters we use and then proceeds to provide more information
about the specifics of the data transformations we apply. Code is available on request.

First, we note that the price formats for futures and strike prices for many of the com-
modities change over time. That is, they will move between, say, 1/8ths, 1/16ths, and
pennies. We make the prices into a consistent decimal time series for each commodity by
inspecting the prices directly and then coding by hand the change dates.

We then remove all options with the following properties

1. Strikes greater than 5 times the futures price

Options with open interest below the 5th percentile across all contracts in the sample
Price less then 5 ticks above zero

Maturity less than 9 days

Maturity greater than 8 months.

A

Options with prices below their intrinsic value (the value if exercised immediately)

Note that in our baseline results, we do not remove options for which we have no volume
information, or for which volume is zero. However, we have reproduced our main analysis
(figure 3) including that filter and find, if anything, stronger results. We report them in
Online Appendix figure OA.5.

We then calculate implied volatilities using the Black—Scholes formula, treating the op-
tions as though they are European. We have also replicated the analysis using American
implied volatilities and find nearly identical results (the reason is that in most cases we
ultimately end up converting the IVs back into prices, meaning that any errors in the pric-
ing formula are largely irrelevant — it is just a temporary data transformation, rather than
actually representing a volatility calculation).

The data are then further filtered based on the IVs:

1. Eliminate all zero or negative IVs

2. All options with IV more than 50 percent (in proportional terms) different from the
average for the same underlying, date, and maturity

3. We then filter outliers along all three dimensions, strike, date, and maturity, removing
the following:

(a) If the IV changes for a contract by 15 percent or more on a given day then
moves by 15 percent or more in the opposite direction in a single day within the
next week, and if it moves by less than 3 percent on average over that window,
for options with maturity greater than 90 days (this eliminates temporary large
changes in [Vs that are reversed that tend to be observed early in the life of the
options).

Al



(b) If the IV doubles or falls by half in either the first or last observation for a contract

(c) If, looking across maturities at a given strike on a given date, the IV changes by
20 percent or more and then reverses by that amount at the next maturity (i.e.
spikes at one maturity). This is restricted to maturities within 90 days of each
other.

(d) If the last, second to last, or third to last IV is 40 percent different from the
previous maturity.

(e) If, looking across strikes at a given maturity on a given date, the IV changes by
20 percent and reverses at the next strike (for strikes within 10 percent of each
other).

(f) If the change in IV at the first or last strike is greater than 20 percent, or the
change at the second or second to last option is greater than 30 percent.

At-the-money (ATM) IVs are constructed by averaging the IVs of the options with the
first strike below and above the futures price. The ATM IV is not calculated for any obser-
vation where we do not have at least one observation (a put or a call) on both sides of the
futures price.

To calculate ATM straddle returns for each maturity, we interpolate linearly between
the IVs of the two closest out of the money options on either side of the spot, and use this
to compute the implied price of the ATM straddle at the beginning of the holding period;
similarly, we interpolate linearly the IVs of those options at the end of the holding period,
and obtain the corresponding price of the straddle at the end of the holding period. These
prices are then used to compute the holding period return. Finally, to calculate returns of
straddles at standardized maturities, we interpolate linearly the returns across maturities
(which corresponds to a feasible portfolio). If options are not available on the maturities on
both sides of the target one, then we use a single straddle if it has a maturity within 35 days
of the target maturity.

A.2 Random effects models

Denote the vector of true Sharpe ratios for the straddles in market ¢ as sr;. Our goal is
to estimate the distribution of sr; across the various underlyings. A natural benchmark
distribution for the means is the normal distribution,

sr; ~ N (g, Lgr) (A.1)

This section estimates the parameters pg. and Y. pg represents the high-level mean of
Sharpe ratios across all the markets, and Y, describes how the market-specific means vary.
The estimates of the market-specific Sharpe ratios differ noticeably across markets, but much
of that is variation is likely driven by sampling error. X, is an estimate of how much the
true Sharpe ratios vary, as opposed to the sample estimates.

Denote the sample estimate of the Sharpe ratio in each market as sr;, and the stacked
vector of sample Sharpe ratios as st = [sAr’l, 57, }/ Similarly, denote the vector of true
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Sharpe ratios as sr = [sr}, s75,...]". Under the central limit theorem,
st = N (sr,Xg) (A.2)

where = denotes convergence in distribution and the covariance matrix ¥ depends on the
covariance between all the returns, across both maturities and underlyings, along with the
lengths of the various samples.! Online Appendix OA.4 describes how we construct Y.

The combination of (A.1) and (A.2) represents a fully specified distribution for the data
as a function of ug. and Y. It is then straightforward to construct point estimates and
confidence intervals for ug,. and X, with standard methods.

To allow for the possibility that average returns differ between the financial and nonfi-
nancial underlyings, the mean in the likelihood can be replaced by us. + pplr, where up
is the difference in Sharpe ratios and Iz is a 0/1 indicator for whether the associated un-
derlying is financial. We calculate the sampling distribution for the estimated parameters
through Bayesian methods, treating the parameters as though they are drawn from a uni-
form prior. The point estimates are therefore identical to MLE, and the confidence bands
represent samples from the likelihood.?

'More formally, we would say that st properly scaled by the square root of the sample size converges to
a normal distribution. The expression (A.2) implicitly puts the sample size in Y. The derivation of this
result is a straightforward application of the continuous mapping theorem, nearly identical to the proof that
a sample t-statistic is asymptotically Normally distributed.

2We use Bayesian methods to calculate the sampling intervals because likelihood-based methods require
inverting large second derivative matrices, which can be numerically unstable. The estimation in this section
is performed using the Bayesian computation engine Stan, which provides functions that both maximize the
likelihood and rapidly sample from the posterior distribution. Code is available on request.
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