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Abstract

This paper studies the implications of a simple theorem, which states that for arbi-

trary underlying dynamics, the cumulants of Bayesian beliefs have a recursive structure:

the sensitivity of the mean to news is proportional to the variance; the sensitivity of the

nth cumulant to news is proportional to the n+1th. The specific application is the US

aggregate stock market, because it has a long time series of high-frequency data along

with option-implied higher moments. The model qualitatively and quantitatively gen-

erates a range of observed features of the data: negative skewness and positive excess

kurtosis in stock returns, positive skewness and kurtosis and long memory in volatility,

a negative relationship between returns and volatility changes, and predictable varia-

tion in the strength of that relationship. Those results have a simple necessary and

sufficient condition, which is model-free: beliefs must be negatively skewed in all states

of the world. We show how to empirically measure belief moments nonparametrically.

1 Introduction

Motivation

The US stock market is a compelling laboratory for studying belief dynamics: not only is

it deeply important intrinsically, it also is the single richest source of data on expectations.

Under very general conditions – not even requiring complete rationality – a security’s price

is the expected discounted value of its future cash flows. In that sense, the stock market

*Dew-Becker: Federal Reserve Bank of Chicago; Giglio: Yale University; Molavi: Northwestern Univer-
sity. The views in this paper are those of the authors and do not represent those of the Federal Reserve
System or Board of Governors. We appreciate helpful comments from seminar participants at the Transat-
lantic Theory Conference and Bank of Canada
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has over a century of data on expectations, in modern times at frequencies that are nearly

continuous, and furthermore data on options gives measures of higher-order moments of

beliefs.1 This paper’s basic goal is to understand the dynamics of beliefs in a general model

of information acquisition, and in particular to understand the relationship between the

various conditional moments of beliefs.

In the US stock market, there is an extremely strong negative relationship between the

aggregate level of prices (e.g. the level of the S&P 500) – again, expectations – and their

conditional variance. That negative correlation is known as the leverage effect.2 Many

models have been proposed to explain that phenomenon. A very natural hypothesis is that it

comes from high volatility raising discount rates (French, Schwert, and Stambaugh (1987)).

However, the link between volatility and risk premia is surprisingly tenuous.3 Instead, we

follow a different strand of the literature, focusing purely on dynamics of beliefs.4 Part of our

aim is to understand whether there is a necessary and sufficient condition for belief dynamics

to be associated with a leverage effect.

Beyond that first relationship, there are numerous other features of returns to under-

stand – negative skewness and positive excess kurtosis in returns, positive skewness and

excess kurtosis along with long memory in the volatility of returns, and a strong relationship

between conditional skewness and the future covariance between prices and volatility. No

other dataset provides the same granularity when testing a model of beliefs.

Contribution

The basic structure of the paper is to generate predictions from a very general model of

belief formation and then examine them quantitatively in stock market data.

The theoretical structure is built around the idea that agents fundamentally want to know

the discounted value of a security’s cash flows. There are many ways that cash flows and

information can be modeled, but they are all broadly asking how expectations are updated

as information arrives. We therefore study a simple but general setup: the NPV follows

some arbitrary process, and agents continuously receive signals about it, which represent in

reduced form the aggregate of all the information people observe in reality. Since the NPV

1The VIX volatility index (based on the so-called model-free implied variance of Britten-Jones and Neu-
berger (2000)) is the most well-known option-implied moment. Work on option-implied distributions goes
back to Breeden and Litzenberger (1978).

2See Merton (1980) and French, Schwert, and Stambaugh (1987), among many, many others.
3See Lettau and Ludvigson (2010) for a review. Moreira and Muir (2017) show how an investor historically

could have taken advantage of this fact.
4Among others, see David (1997), Veronesi (1999), Weitzman (2007), David and Veronesi (2013), Collin-

Dufresne, Johannes, and Lochstoer (2016), Johannes, Lochstoer, and Mou (2016), Kozlowski, Veldkamp,
and Venkateswaran (2018), Farmer, Nakamura, and Steinsson (2024), Wachter and Zhu (2023), and Orlik
and Veldkamp (2024). While those papers are rational, there is also a large behavior literature that focuses
on belief dynamics, e.g. Gennaioli, Schleifer, and Vishny (2015).
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process is essentially unconstrained, the analysis nests a wide range of specifications that

have been studied in the literature.

The results are stated in terms of the cumulants of agents’ conditional distributions for

the NPV (which we refer to as fundamentals). Recall that the first three cumulants of a

distribution are equal to the first three central moments (in the specific results, we do not

go past the third cumulant anyway). The paper’s main theoretical result is a transparent

recursive relationship among the cumulants. Specifically, the sensitivity of the first moment

(which is the price agents will pay for the security) to news is proportional to the second

moment, and in fact the sensitivity of the nth cumulant to news is proportional to the n+1th

cumulant.

The theorem is useful because it shows that the conditional moments are in fact sufficient

statistics, measuring how beliefs respond to signals. The paper’s core motivating fact is

that aggregate stock returns are negatively correlated with innovations to volatility. When

agents are learning about fundamentals, that happens if and only if agents’ conditional third

moment for fundamentals is negative, and in fact the magnitude of the return-volatility

relationship is proportional to the conditional third moment, representing a strong and

testable prediction.

Beyond sensitivity, the theorem also yields expressions for the drift in the cumulants. In-

terestingly, mean-reversion in volatility is generically nonlinear: instead of depending on the

current level of volatility, the drift in volatility is proportional to its square. That fact yields

the sort of long memory that has been observed in stock market volatility. Rather than re-

quiring a highly complicated model, or even any particular assumptions about fundamentals

at all, long memory is an inevitable feature of information acquisition.5

Long memory also represents a prediction that is distinct from what would be implied by

a model in which the leverage effect is driven purely by risk premia. A second prediction that

also distinguishes the model is that the magnitude of the leverage effect should be related

to the current conditional skewness of returns, and with a specific value for the coefficient,

which we confirm in the data.

After developing a few more theoretical results, including for fragility of beliefs with re-

spect to errors in agents’ signals, and examining some specific examples, we move on to a

quantitative analysis of the model’s predictions. First, we examine a very simple paramet-

5There is a long-running literature on long memory in stock market volatility going back to Mandelbrot
(1963). It is sometimes modeled as being fractionally integrated, and such processes can be constructed
fractally (e.g. Granger (1980) and Mandelbrot, Calvet, and Fisher (1997)). A simple example of nonlinear
decay in uncertainty is to note that with a Gaussian prior with variance σ2

0 and Gaussian signals with

variance σ2
S , the posterior variance after obsering N signals is

(
σ−2
0 +Nσ−2

S

)−1
, which shrinks polynomially

rather than geometrically.

3



ric model with three free parameters that has the characteristics we find are necessary for

matching the data. That model (with a constant probability of exponential jumps) is able

to match the first four moments of returns, volatility, and changes in volatility, along with

volatility’s autocorrelations and its relationship with returns. The results have two implica-

tions. First, they show the mechanism is quantitatively relevant. Second, the addition of an

extremely simple learning process is enough to generate significant nonlinearity – enough to

match what is observed in stock return dynamics.6

Second, and perhaps more relevantly, we show how to derive nonparametric predictions

from the model – tests and estimates that can be obtained without knowing anything about

the underlying dynamic process for fundamentals. First, the model has predictions for the

relationship between volatility its own lag, returns, and skewness, that we test and find hold

well in the data. Second, it is possible to estimate agents’ implied uncertainty about the

level of fundamentals without knowing the underlying model. In US stock market data,

we estimate that uncertainty to have a standard deviation of between 11 and 18 percent.

In a survey administrated by Yale University since the 1980’s, cross-sectional disagreement

about the fundamental value of the stock market has a standard deviation of 17 percent,

which provides some independent support for our estimate (subject to the usual caveat that

disagreement and uncertainty are theoretically distinct).

Stepping back

Again, at a high level, the paper is about sufficient statistics. Without knowing the full

model that agents believe drive fundamentals, we can still obtain strong implications for how

beliefs are updated based on current beliefs. That basic fact has a surprising implication

when it is reversed: by observing the local behavior of expectations – in our empirical

setting, the local behavior of prices – it is possible to recover global features of beliefs, i.e.

the conditional moments. Return volatility, even just within a single day, measures agents’

uncertainty (and, again, we can put a number on that). The volatility of volatility measures

the agents’ conditional third moment.

On some level, that is inevitable – beliefs are the state variable, so they must determine

the local behavior of prices. What is surprising, though, is that the relationships are uni-

versal, and not dependent on the underlying process, so it is possible to recover moments

completely nonparametrically.

Past work

As discussed above, this paper is most closely related to past work studying non-Gaussian

6Again, past work noted above has shown that learning can help explain stock return dynamics. The
point here is that these results are extremely general and robust and not dependent on the specific settings
studied in past work.
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filtering problems, including Veronesi (1999), David and Veronesi (2013), and Kozlowski,

Veldkamp, and Venkateswaran (2018), among others. The first two papers study learning

about states, while the last is about learning about time-invariant parameters, but both

types of learning are accommodated within our setup. A general feature of non-Gaussian

learning is that is not very tractable – solutions are often characterized in terms of some

differential equation that must be solved numerically. This paper makes some progress on

that front because it is able to directly describe the dynamics of key features of interest –

agents’ conditional moments – in a general setting.

Additionally, an important distinction from past work is that even though we assume

agents know the structure of the economy (which is not to say that they know the value

of the parameters, just that they know the structure and what parameters they need to

estimate), it is still possible to obtain testable predictions even if the econometrician does

not know the true underlying structure, and in fact it is even possible to estimate agents’

conditional uncertainty about fundamentals.

Outline

The remainder of the paper is organized as follows. Section 2 describes the model struc-

ture and gives the main theoretical result. Section 3 then examines the theoretical predictions

and section 4 studies some extensions and robustness to certain assumptions. Last, section

5 takes the model to the data, studying both a calibration and nonparametric tests of the

theory, and section 7 concludes.

2 Model setup and solution

We motive the analysis in terms of asset prices, and this section begins by describing the

simple asset pricing framework we study. That setup is designed, to lead to a standard

filtering problem. The solution to that problem – in theorem 1 – is general, and not actually

dependent on the asset pricing setting.
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2.1 Model setup

7 The class of Feller processes with finite-dimensional states is extremely broad and incor-

porates all models commonly studied in economics – jump diffusions, Markov chains (e.g.

regime-switching processes), semimartingales, affine processes, etc. θt need not be stationary

at any order, except to the extent required for asset prices to exist.

2.1.1 Dynamics of fundamentals

There is a latent variable θt representing the state of the economy. If agents knew θt, we

assume they would set log stock prices equal to

xt ≡ logE

[∫ ∞

s=0

Ct+s

Rt,t+s

ds | θt
]

(1)

where Ct denotes the time-t cash-flow and Rt,t+s is the discount rate between dates t and

t+ s. xt is the object of interest – we think of it as the (log) fundamental value that stocks

would take on if agents had full information in the sense of being able to measure the true

state of the economy, θt. We make no particular assumptions about risk aversion. xt is

simply what agents would pay if they knew the true state of the economy.

In terms of restricting, instead of making assumptions about θt and how it determines

cash-flows and discount rates, we work with xt directly. A structural model will have impli-

cations for the dynamics of Ct and Rt,t+s, and one can then ask whether the xt process they

induce satisfy our assumptions. The necessary restrictions on xt are reported in appendix

A.1.1. The key requirement is that xt, in reduced form, is driven by a Markov process with

the Feller property. Examples of such processes are Brownian motions, jump diffusions, and

Levy-stable processes – in short, anything studied in economics. There is no requirement

that xt is stationary at any order, and all of its moments need not exist (i.e. it may be heavy-

tailed). xt additionally can be the outcome of a learning model. For example, cash-flows

might have a mean growth rate that is unknown, and then θt includes the entire history of

cash-flows as part of the current state. Essentially what the Feller assumption rules out is

just that the dynamics of xt are discontinuous in terms of the state. For example, the mean

of xt cannot shift discretely when the state θt crosses some boundary.

7An example of a violation of the Feller property is if the dynamics of the process change discontinuously
with respect to the state.
In principle, the results hold when θt is an element of a much more general class of topological spaces. For

example, under certain assumptions, the results here also hold when the state θt is itself a function (e.g. a
cross-sectional distribution).
For the purposes of the present paper, though, θt being a finite-dimensional vector is a sufficient level of

generality.
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2.1.2 Information flows

We denote the log of stock prices by pt. If agents observed the true state, θt, they would

set prices as pt = xt. In the absence of knowing θt we simply assume that agents directly

receive a signal about the NPV – the actual value relevant for prices – which follows

dYt = xtdt+ σY,tdWt (2)

where σY,t follows some exogenous process.8 A reasonable benchmark is that σY,t is constant,

but it could also vary over time, giving a form of time-varying uncertainty (we provide

evidence below for the US stock market that it appears stable). Obviously this is not the

only possible information structure. Agents could receive signals about nonlinear functions

of xt, such as its moments, or about θt, which might contain relevant information about the

future path of xt. However, given that xt is what agents ideally would like to know, it makes

a certain amount of sense to assume that it what agents learn about. Furthermore, this

information specification nests full information as σY,t → 0.

We then assume that

pt = E
[
xt | Y t

]
(3)

where Y t is the history of signals up to date t.9

The assumption that information flows diffusively matters for the analysis, but it is not

completely restrictive – section 4.3 discusses how the results apply when information may

arrive discretely or when there are large information revelation events. The assumption that

Yt is informative about xt itself and not either other features of θt or other functions of xt

(e.g. it could depend on x2
t ) is also a restriction. For an agent who is trying to price assets,

xt is a sufficient statistic – it is the ideal price they would like to pay. However, in reality

agents certainly might receive information about other features of the world. Our analysis

is extremely general in the dynamics for fundamentals, but pays for that generality with a

tight restriction on the information structure.

The structure here is motivated by a pricing problem, but it is a much more general

setup. xt is just some latent object of interest – it could be trend inflation, for example.

Then E [xt | Y t] would represent agents’ expectations of trend inflation given their history

8Formally, it is measurable with respect to the filtration induced by Yt
9Thiere is perhaps a slight conceptual inconsistency here, in that we’re saying pt =

logE [logE [NPVt | θt] | Y t]. The appearance of the logs here is entirely to make the model behave nat-
urally when xt follows a geometric process. The Campbell–Shiller approximation is an alternative way to
get to the same place. If, instead, xt follows a linear process, then the logs are unnecessary and we simply
have nested expectations.
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of signals. None of this needs to be about asset prices.

2.2 Solution to the filtering problem

We describe the dynamics of beliefs about fundamentals by describing the dynamics of

the agents’ posterior cumulants. Formally, the cumulants are the derivatives of the log

characteristic function, but for the purposes of this paper we will only focus on the first

three, which are equal (for all distributions for which they exist) to the first three central

moments. In other words, almost nothing will be lost if the word “moment” is substituted

for “cumulant” in everything that follows.

Denote the n-th cumulant of the time-t conditional distribution of xt by κn,t.
10 Since the

first cumulant is the expectation, pt = κ1,t.

Theorem 1 Given (2) and restrictions on xt given in appendix A.1.1,, for all n for which

the n+ 1th cumulant exists11

dκn,t =
κn+1,t

σ2
Y,t

(dYt − Et [xt] dt)−
1

σ2
Y,t

n∑
j=2

α
(n)
j κj,tκn−j+2,tdt+ Et

[
d
(
xk
t

)]
(4)

where Et [·] ≡ E [· | Y t] and the coefficients
{
α
(k)
j

}
are given in appendix A.1.1.

That result follows from a straightforward application of results in Lipster and Shiryaev

(2013) and Bain and Crisan (2009).12 The most valuable feature of theorem 1 is that it

shows that the sensitivity of each cumulant to signals is proportional to the current value of

the next cumulant.

The first three cumulants, since they map into the first three moments, are worth writing

out directly.

10The first three cumulants are equal to the first three central moments. For the only the normal distri-
bution all higher-order cumulants are equal to zero.

11Since the cumulants are derivatives of a function, if κn+1,t exists then all lower-order cumulants also
exist. Note that the posterior of xt conditional on yt is necessarily subgaussian, meaning that all moments
and cumulants exist (Guo et al. (2011)). However, the step from there to a stochastic differential equation
for the posterior cumulants may be nontrivial.

12Theorem 1 is closely related results in Dytso, Poor, and Shamai (2022), with two key differences. First,
xt here is dynamic instead of constant. Second, theorem 1 allows the calculation of the evolution of the
conditional cumulants from knowledge only of the priors. Surprisingly, as Dytso, Poor, and Shamai (2022)
discuss, there do not appear to be any other earlier precedents to the family of results in their work and
ours.
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Corollary 2 The dynamics of the first three moments/cumulants are

dpt = dκ1,t =
κ2,t

σ2
Y,t

(dYt − Et [xt] dt) + Et [dxt] (5)

d vart [xt] = dκ2,t =
κ3,t

σ2
Y,t

(dYt − Et [xt] dt) + Et

[
d
(
x2
t

)]
−

κ2
2,t

σ2
Y,t

dt (6)

dEt

[
(xt − Et [xt])

3] = dκ3,t =
κ4,t

σ2
Y,t

(dYt − Et [xt] dt) + Et

[
d
(
x3
t

)]
− 3

σ2
Y,t

κ2,tκ3,tdt (7)

The paper’s predictions follow from these equations. Their key feature for our purposes

is that the innovations in the moments/cumulants are themselves multiplied by cumulants.

The current cumulants are therefore sufficient statistics for their own dynamics, up to the

Et [d (x
n
t )] terms, which depend on the dynamics of fundamentals.

The intuition for the result is surprisingly simple: in (4), the gain, κn+1,t/σ
2
Y,t, is a

local regression coefficient. For the mean in equation (5), for example, the numerator

κ2,t is equal to covt (xt, dYt) /dt and the denominator is equal to vart (dYt) /dt, so their

ratio is exactly the regression coefficient. Similarly, κ3,t = E
[
(xt − Et [xt])

3] is equal to

covt
(
(xt − Et [xt])

2 , dYt

)
/dt, so κ3,t/σ

2
Y,t is again a regression coefficient.

3 Predictions

We now examine the predictions of theorem 1 for the behavior of returns, beginning with

volatility. Recall that the leverage effect is the name for the observed negative correlation

between innovations to return volatility and returns themselves. The key theme underlying

the predictions is that richness in the joint dynamics of higher moments can be a simple

consequence of learning, without requiring a complicated model.

3.1 Volatility and the leverage effect

For stocks, at high frequency cash flows are predetermined, and in any case the variance of

changes in cash flows for the aggregate US stock market at even the monthly frequency is

tiny compared to changes in prices.13 We therefore treat return volatility as equal to price

volatility. Formalizing the discussion above, we have

13The historical variance of monthly returns 2.85 × 10−3, while the variance of dividend growth is over
600 times smaller – 4.46× 10−6.
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Corollary 3 The instantaneous volatility of prices and hence returns is

std (dpt) =
κ2,t

σY,t

dt1/2 (8)

Again, the conditional volatility of prices depends on agents’ current posterior variance

over fundamentals, κ2,t. So, up to σY,t, price volatility measures uncertainty. If we can

measure σY,t (which we show below we can), then we can also measure investors’ uncertainty

about fundamentals, κ2,t.

Proposition 1 The instantaneous leverage effect, measured as the coefficient in a regression

of changes in the conditional variance of returns on price changes is

cov
(
dpt, d

[
std (dpt) dt

−1/2
])

var (dpt)
=

κ3,t

σY,tκ2,t

(9)

The leverage effect is completely determined by the second and third moments of agents’

conditional distribution and the noise in agents’ signals (again, a set of sufficient statistics).

Since σ2
Y,t and κ2,t are strictly positive, a necessary and sufficient condition for the existence

of a leverage effect is that κ3,t < 0: there is a leverage effect if and only if agents’ posterior

distribution for fundamentals is negatively skewed. And the fact that we observe a leverage

effect in nearly all months in the data, including during severe downturns, then implies that

the conditional skewness is negative in essentially all states of the world (at least among

those in our sample).

The intuition here is relatively simple: a negative third moment means that the right tail

of the posterior is longer than the left. When agents receive good news about fundamentals,

that tells them they are likely on the narrower side of the distribution, and their conditional

uncertainty falls. That intuition is generic – it is not dependent on some specific specification.

And, additionally, the value of theorem 1 is that it formalizes that intuition and shows that

the third moment is in fact that correct measure of asymmetry in the distribution to capture

such an effect.

3.2 Slow decay in volatility

The second term in (6) shows how volatility decays. When κ2,t (and hence also price volatil-

ity) is high, κ2
2,tσ

−2
Y,tdt also grows, pulling volatility back down towards its steady state.

Interestingly, though, unlike standard models (e.g. an AR(1) or Ornstein-Uhlenbeck pro-

cess), the mean reversion is quadratic. That is, the rate of mean reversion increases as κ2,t

moves further above its mean. When volatility moves back down, mean reversion slows.
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There is a large literature studying nonlinearity in volatility dynamics in securities mar-

kets. The form of mean reversion here is consistent with that literature, in that the decay

is non-exponential.14 When jumps up in κ2,t are large relative to its steady-state value, its

decay is approximately of the form 1/ (a+ t) for a coefficient a (that depends on the other

parameters of the model). This is exactly the polynomial decay studied in the literature on

long memory in volatility.

In other words, when investors are learning about fundamentals dynamically, long mem-

ory is to be expected. It is a simple consequence of the dynamics of second moments in

filtering models. We examine the model’s ability to fit detailed data on volatility dynamics

in more detail in section 6.

3.3 Skewness in returns

Since Pt follows a diffusion, its instantaneous skewness is formally zero. Skewness arises as

returns interact with changes in volatility. Informally, to first order in σY,t and at some

(small) horizon ∆t,

skewt→t+∆t (dpt)
1

3∆t1/2σY

≈ κ3,t

κ2,t

(10)

That is, the conditional “instantaneous” skewness of returns again depends on the second

and third moments of the posterior. As ∆t → 0, skewness goes to zero. But, locally, it

scales with skewt (xt)κ2,tσY,t. That fact provides a link between indexes of the conditional

skewness of returns (skewt→t+∆t (dpt)), such as the CBOE’s option-implied skewness, and

the conditional skewness of fundamentals, skewt (xt), which determines the leverage effect.

3.4 Skewness in volatility

In the data, the VIX is itself skewed. Table 1 in the quantitative analysis below shows that it

true of both its level and monthly changes. The source of that effect is visible if we combine

equations (6) and (10) (taking the latter as an equality here) to obtain

std (dκ2,t) =
|skewt (dpt)|

3

κ2,t

σ2
Y,t

(11)

All else equal, the volatility of innovations to κ2,t scales with κ2,t itself. When κ2,t falls

towards zero, the volatility of its innovations quickly becomes much smaller, while they grow

14See Corsi (2009) for a discussion of some of the evidence (going back at least to Ding, Granger, and
Engle (1993)) along with the fact that the data is generally consistent both with strict long memory and
also processes that simply approximate it, since formally long memory is defined asymptotically

11



when κ2,t rises. That effect creates a long right tail in the level of κ2,t itself, and any skewness

in κ2,t itself is also inherited by dκ2,t.

κ3,t also plays a role in volatility of volatility through the term skewt (dpt). Again, simple

filtering gives a generically rich relationship between higher moments.

Past work (e.g. Bollerslev, Tauchen, and Zhou (2009)) has emphasized the importance

of time-varying vol-of-vol. This present model gets it through an endogenous mechanism.

Note also that this variation does not just come from the volatility of fundamentals following

a nonlinear process, as in Cox, Ingersoll, and Ross (1985).

3.5 Summary

To briefly summarize so far, simple filtering predicts a leverage effect when κ3,t < 0, long

memory in volatility, skewness in returns for κ3,t ̸= 0, skewness in both levels and changes

in volatility, and time-varying volatility of volatility. None of this requires any mechanism

more complicated than Bayesian updating in the presence of nonzero higher moments.

3.6 Examples

This section briefly considers a few examples which allow us to further describe some of the

model’s implications.

3.6.1 Linear Gaussian process

If xt follows a linear Gaussian process, then the model’s solution is the Kalman filter. pt is a

linear function of the history of signals; its gain, and hence conditional variance, eventually

converges to a constant; and its conditional skewness and all higher moments are always equal

to zero. There is then no leverage effect, volatility of volatility, or skewness in expectations

or volatility, as is well known.

As discussed above, this can involve learning. That is, the analysis does not assume that

agents know all the parameters of the economy. For example, suppose the log cash-flow in

period t is dct = c̄dt+ σcdZt, where Zt is a standard Wiener process. If agents to not know

c̄, then the state variable is θt = ct, and xt = t−1ct+constant. Everything remains linear and

Gaussian. What matters is not that agents know all the economy’s parameters – they just

need to know its structure.
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3.6.2 Markov switching process

Veronesi (1999) studies a two-state switching model in which the latent state xt switches

between a low and a high value at rates λHL and λLH , respectively, and agents have a

Gaussian signal as specified above. In this case, the low and high values of xt can be

normalized to 1 without loss of generality. Such a two-state setup is also common in analyses

of the business cycle, e.g. Hamilton (1989). Agents’ posterior at any given time has only a

single parameter, πt, their posterior probability that xt = 1.

The conditional variance and third moment of xt, which drive price dynamics, are simple

functions of πt:

κ2,t = πt (1− πt) (12)

κ3,t = (1− 2πt)× κ2,t (13)

The variance here then is a bell-shaped function of πt, peaking at 1/4 for πt = 1/2, and

declining to zero on both sides. The third moment is equal to the variance times (1− 2πt).

It is equal to zero for πt ∈ {0, 1/2, 1}. For πt ∈ (0, 1/2), κ3,t > 0, and for πt ∈ (1/2, 1),

κ3,t < 0.

Economically, when πt is near 1 so that agents are confident they are in the good state,

volatility is low, but the third moment is strongly negative, so there is a leverage effect.

However, when a bad state is realized and investors have seen enough signals to be confident

in that, so that πt is near zero, the leverage effect reverses : agents no longer worry about

the economy getting worse, so there is only upside and κ3,t > 0.

These results illustrate the importance of agents continuing to learn in bad states. If

learning stops once agents know the economy is in a recession, then the leverage effect

disappears or even reverses. But we do not observe that empirically. One response might

be to simply add more states – David and Veronesi (2013) have six states – but it will still

always be the case that once agents are confident they are in the worst state, skewness must

turn positive.

3.6.3 Exponentially distributed fundamentals

As discussed above, because the leverage effect holds at all times, a model that fits the data

needs to have the feature that the conditional distribution of fundamentals is always skewed

left. The model in this section generates much of that negative skewness and is also related

to the quantitative model that we study in the next section, but stylized so that it can be

solved in closed form. In particular, we assume that fundamentals, x, are drawn on date 0
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from the distribution

x ∼

{
0 with prob. (1− π0)

Exponential (λ) with prob. π0

(14)

and subsequently remain fixed forever, while agents observe the continuous Gaussian signal

Yt = xdt+ σY dWt (15)

This example is therefore useful for understanding the dynamics of learning about the state

following the possibility of one extreme event. The true dynamic model can be thought of

intuitively as this miniature model being run repeatedly – agents repeatedly (or continuously)

learn about the state of the economy, with some belief that there may be a crash. That is,

one could imagine (very approximately) that the model in this section plays out once a year,

so that π0 represents the fraction of years with a crash.15

This model is solvable in closed form:

Solution 4 Having observed the signal process Y up to date t, the agent’s posterior is

x ∼

{
0 with prob. (1− πt)

TN (0, µt, σ
2
t ) with prob. πt

(16)

where TN (0, µt, σ
2
t ) is a normal distribution truncated above at zero and πt, µt, and σ2

t are

functions of Yt and t.

Appendix A.1.4 gives the formulas for πt, µt, and σ2
t .

It is not the case in general that the distribution of x conditional on the signals must

be negatively skewed. However, note that a normal distribution truncated above at zero is

always negatively skewed. That force means that even when πt is large x remains negatively

skewed as long as σ2
t is not too small.

Impulse response functions This section examines two impulse response functions – to

errors in the signal, and to fundamentals – in the exponential example. First, consider a

negative shock to the error in dYt, i.e. to σY,tdWt. The IRFs are averaged across draws

from the prior distribution for the state. The parameters are chosen to match those used in

the dynamic model in the next section. The figure below plots the response of prices and

volatility. The negative shock to the signal lowers prices temporarily and raises volatility,

15This should not be taken literally. The economy does not reset on January, 1st each year. t does not
represent the day of the year. The model in this section just illustrates some features of learning in a specific
parametric model that happens to have a closed-form solution.
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consistent with the leverage effect and the fact that beliefs are typically negatively skewed in

this model. Prices then recover fairly quickly over the course of a few weeks, and volatility

follows a mirror image, falling at about the same rate.

Figure 1: Response to negative error in the signal
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Note: The left-hand panel plots the IRF for prices – the conditional expectation of x – and the right hand

for the conditional standard deviation of prices. The shock is a one-time unit standard deviation negative

error in the signal (i.e. a negative realization of σY dW .

The second IRF is slightly less standard. The “shock” now is the choice of x. From the

agent’s perspective this is a shock like any other, it’s just a shock that only occurs on a single

date (date 0). Informally, this can be thought of as an impulse response for the realization

of a disaster. We study that more formally in the quantitative evaluation below. The IRF,

then, is equal to the average path of pt, along with its conditional volatility, for x = −λ

relative to x = 0.

When x has a negative realization, prices initially are no different from a positive re-

alization, since on date 0 investors cannot yet know that anything is different. As they

accumulate signals, though, they eventually come to the conclusion that fundamentals are

weak, and pt eventually converges to −λ (which was chosen for this particular calibration –

in reality every crash realization for x would take on a different value). Volatility initially

rises with the accumulation of negative signals, and then starts to fall due to the fact that

when uncertainty is higher, information effectively flows more quickly. In this case, note

15



Figure 2: Response to a negative realization of fundamentals
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Note: These plots are the same as in the previous figure, except they correspond to the IRF for a negative

realization of fundamentals. Specifically, the IRF for prices is the average path of prices when x = −λ

compared to x = 0, and the right-hand panel is the same for price volatility.

that volatility takes far longer to revert than in the case of a purely transitory shock – two

years into the simulation, about 1/10th of the initial rise in volatility still remains. That

demonstrates the model’s long memory in volatility.

3.6.4 Are there simple and tractable special cases?

In looking at theorem 1, a natural question is whether it is possible to shut down the

cumulants after some order. Unfortunately that is not strictly possible because there is no

distribution such that κn = 0 for all n greater than some n̄ other than the normal distribution.

The normal is the special case where we can focus on just two cumulants. There is no other

distribution for which it is possible to just track a finite number of moments (though that

does not say how large the numerical error would be from doing so).

As an alternative, one might hope to track just a subset of the cumulants. For example,

suppose agents begin with a symmetrical prior for xt – i.e. one for which all odd cumulants

are equal to zero. Unfortunately, simple inspection of theorem 1 shows again that that is

not possible – the odd cumulants remain zero with probability zero, since their responses
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to the signal dYt depend on the even cumulants, which are nonzero (except for the normal

distribution).

4 Extensions and robustness

This section considers a few extensions of the analysis. We first discuss fragility with respect

to errors in agents’ signals. Second, how to use local information about prices to infer global

features of investors’ beliefs. Last we examine robustness of the results to discreteness in

the signals and also provide a result on the limiting behavior when the noise in the signal

becomes small.

4.1 Fragility

To define fragility, first we define a type of sensitivity.

Definition 5 Noise sensitivity is the marginal response of prices to errors in the signal,

dPt/d (σY,tdWt)

Since agents cannot directly distinguish errors in the signal (σY dWt) from the part driven

by fundamentals (Xdt), any sensitivity of prices to signals necessarily also leads to sensitivity

to errors.

If sensitivity rises following negative shocks, then consecutive negative shocks have pro-

gressively larger effects on prices. We therefore refer to the derivative of noise sensitivity as

fragility:

Definition 6 Fragility is minus the proportional response of noise sensitivity to errors in

the signal,
−d2Pt/d(σY,tdWt)

2

dPt/d(σY,tdWt)

Fragility can equivalently just be seen as concavity in the mapping from noise to prices.

That concavity means that noise has larger downward than upward effects (to second or-

der).16

Corollary 7 Noise sensitivity and fragility are equal to:

Noise sensitivity =
κ2,t

σ2
Y,t

(17)

Fragility = −skew
(
xt | Y t

)
κ
1/2
2,t (18)

16Note that defining fragility based on concavity is similar to the approach advocated by Taleb and Douady
(2013), but more as a local concept (whereas that paper is formally focused on tails – i.e. −∞ limits). Axenie
et al. (2024) define fragility similarly to here based on convexity in the response to shocks.
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Fragility is (minus) the sensitivity of the gain to innovations in the signal, which theorem

1 shows depends on the conditional third moment of xt. When the conditional skewness is

more negative or the conditional volatility greater, prices are more fragile, in the sense that

noise in the signal can have larger negative than positive effects. Periods of high uncertainty

are thus periods where investors are learning a lot – the gain is high – but they are also

more susceptible to errors than average, and (holding skewness fixed) their beliefs are most

fragile.

As with all the results, this follows from Bayes’ theorem. When the left tail of the

posterior is relatively long (κ3,t < 0) agents think there is a larger chance that fundamentals

are far below than far above their current mean. That then makes them update beliefs more

strongly in response to negative than to positive signals, leading to fragility.

Corollary 7 motivates the use of option-implied skewness as a real-time measure of

fragility. It does not just reflect the subjective distribution of returns. It also measures

the extent to which noise in investors’ information can lead to large price declines. Specifi-

cally, combining (18) and (10) we have

Fragility ≈ −dt−1/2

3σY,t

skewt (dpt) (19)

So a skewness index that measures skewt (dpt) is not only a measure of the conditional

distribution of returns, it is also informative for how prices respond to errors.

Proposition 2 In the exponential example (section 3.6.3), for all t and for all realizations

of Yt: fragility is positive and decreasing in πt.

The fact that fragility is decreasing in πt means that it is largest when there is a very

small probability of a large negative shock.

4.2 Inferring global properties from local information

Theorem 1 says that the local properties of prices are determined by sufficient statistics

describing the global properties of beliefs about fundamentals. So far we have analyzed

what is required of those global properties in order to generate local price behavior observed

empirically. This section reverses the analysis: how can we use local information about prices

to learn about global properties of beliefs?

Under theorem 1, prices follow a diffusion with volatility κ2,t/σY,t. There are standard

results that then allow for consistent estimation of the diffusive volatility based on high-

frequency observations of prices. Those methods therefore allow for real-time estimation
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of κ2,t/σY,t without knowing any of the underlying parameters of the model. Again, κ2,t

measures a global feature of beliefs – the conditional variance. So, subject to some potential

contamination from σY,t, it is possible to estimate that global feature in real time using only

local variation in prices.

A similar argument holds for the κ2,t process. Since the local volatility of prices is κ2,t/σY,t,

the volatility of volatility, from theorem 1, is κ3,t/σ
2
Y,t. There are also nonparametric methods

for estimating vol-of-vol from high-frequency price data. As with volatility itself, an estimate

of volatility-of-volatility – or, for that matter, of the strength of the leverage effect – yields

global information about investor beliefs, in this case κ3,t/σ
2
Y,t, i.e. the third moment of the

posterior distribution (again, contaminated by σ2
Y,t).

Note that the fragility studied in the previous section also has the same local/global

features as volatility and vol-of-vol. We defined fragility as a local concept, but it depends

on global characteristics of beliefs.

4.3 Discrete information revelation events

Looking back at theorem 1, one can imagine potentially handling larger information revela-

tion events by integrating the dY terms. That turns out to be approximately possible, in a

certain sense. Dytso, Poor, and Shamai (2022) prove the following.

Proposition 3 [Dytso, Poor, and Shamai (2022), equation (52)] For a random variable xt

and a signal yt ∼ N (xt, σ
2),

d

dy
κj (xt | yt = a) = κj+1 (xt | y = a) (20)

κj (xt | yt = a) denotes the jth posterior cumulant of xt conditional on observing yt = a for

some fixed a ∈ R.

This result shows that the type of recursion in theorem 1 continues to hold for discrete

revelation events – diffusive information coming in infinitesimal increments in continuous

time is not necessary for the central results. At the same time, it shows that normality

is important – we can drop continuity, but proposition 3 still requires normality.17 That

said, proposition 3 also shows why continuous time is useful here: it allows us to use prior

cumulants when calculating sensitivities. Specifically, even with knowledge of all the prior

17Dytso and Cardone (2021) explore related results for non-Gaussian variables, but do not derive a power
series result. It is possible to derive a similar result for certain other special cases, e.g. when the likelihood
is exponential or Poisson.
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cumulants and the value of the signal, one cannot directly use (20) since it involves the

posterior cumulants.

4.4 Is it possible to ignore the higher-order cumulants?

When looking at theorem 1, a natural question is whether it is possible to ignore the higher-

order cumulants and just focus on, say, the first three. The short answer is no. There is

no distribution for which there exists an n̄ such that κn = 0 for all n ≥ n̄, except for the

normal for which n̄ = 3. So while it is natural and intuitive, the normal distribution is also

an extremely special case, in that there is no other distribution that is even qualitatively

similar in terms of the behavior of its higher cumulants.

That also means that if any of the higher cumulants is ever nonzero, then the distribution

is permanently non-normal (since a Gaussian update of a non-normal distribution always

yields a non-normal posterior), and all of the higher cumulants vary over time according to

the dynamics in theorem 1.

5 Illustrative calibration

This section presents a simple quantitative example. Its motivation is twofold. First, it

helps understand the extent to which the qualitative predictions above map into quantita-

tively reasonable behavior. Second, it helps in understanding the extent to which layering

incomplete information over a standard and simple specification for fundamentals enriches

the model’s predictions in ways that allow it fit the data well. That said, it is important to

emphasize that the simulation results are just an example. Their failure to match the data

on some dimension does not mean that there is no model with the sort of learning we have

studied so far that would do better, just that the exact specification detailed in this section

is (obviously) imperfect.

5.1 Model setup

We assume that cash flows follow a dynamic version of the exponential example from above.

That is, dt is compound Poisson-exponential, with

ddt = ϕλdt− YtdNt (21)

where Nt is a Poisson process with constant rate ϕ and Yt is an exponential random variable

with mean λ. The ϕλdt term is a normalization so that mean dividend growth is equal to
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zero. For simplicity, we assume that discount rates are constant, so that xt = dt − cons.

The only free parameters in the model are ϕ, λ, and σY . When σ2
Y = 0, this is a simple

disaster model with constant disaster risk.

5.2 Numerical solution

The analytic results in principle require tracking an infinite number of cumulants over time.

To simulate, we simply discretize the model – i.e. treat dt as discrete Markov chain – and

then directly calculate the updates via Bayes’ theorem. We use the analytic formulas above

when calculating conditional moments, and the results are nearly identical when calculating

them numerically (i.e. via quadrature).

5.3 Parameter selection

We obtained parameters through simple moment matching. The aim here is not to maximize

the data likelihood but rather to ask whether this extremely simple and obviously misspec-

ified model can quantitatively fit major features of returns. The moments used for fitting

are discussed in appendix A.1.5. Ultimately what is important is the model’s quantitative

behavior given the parameter – this is not an estimation exercise.

The first set of moments are unconditional moments of returns: the unconditional stan-

dard deviation and kurtosis and skewness at horizons of returns at one-, five-, 10-, and 20-day

horizons.

The second is the same, but for returns scaled by lagged volatility, which we proxy for

with the VIX. That is, we calculate the same unconditional moments for Rt/V IXt−1.

The third set of moments is for daily changes in the VIX: their skewness, kurtosis, and

correlation with market returns. Finally, the fourth set of moments is the 10-, 20-, and

60-day autocorrelations of the VIX.

Matching those moments as well as possible leads to the calibration {ϕ, λ, σY } = {0.00037, 0.43, 2.89},
where the time unit is taken to be a day. That value of ϕ implies that disasters occur on

average once every 10.7 years. σY = 2.89

5.4 Results

Tables 1 and 2 report unconditional moments for returns and the VIX in the model and

the data. Across the 13 moments, the model broadly matches the data, missing on only

the most extreme statistics. Looking at returns, it has similar volatility and skewness, but

kurtosis is too small by half. Note that kurtosis is necessarily the most weakly estimated of
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the three and most strongly driven by outliers. For returns scaled by lagged volatility, the

model generates somewhat less kurtosis and skewness than is observed in the data, possibly

indicating that it is failing to capture some intraday dynamics.

Table 2 shows that the model matches the data in terms of the unconditional standard

deviation, skewness, and kurtosis for the VIX, both in levels and daily changes.

Table 1: Daily return moments

Rt Rt/V IXt−1

Moment Data Model Data Model
Std. dev. 1.49 1.21 1.00 1.00
Skewness -0.16 -0.18 -0.58 -0.20
Kurtosis 19.4 10.4 5.5 3.1

Note: The table reports moments of the daily returns distribution, in the model and in the data.

Table 2: VIX moments

Level Daily change
Moment Data Model Data Model
Std. dev. 7.9 7.4 1.6 1.1
Skewness 2.17 2.3 1.47 0.42
Kurtosis 11.41 10.4 29.9 21.2
Corr. w/ Rt N/A N/A -0.70 -0.90

Note: The table reports moments of the VIX (level and daily changes), in the model and in the data.

The figure plots the behavior of asset prices in the simulated model. Panels (a), (b), and

(c) are meant really just as an eyeball test – beyond the moments reported in tables 1 and

2, they show that the model generates returns and volatility that appear, both in levels and

changes, highly similar to what is observed empirically. Panel (d) shows that the behavior

of skewness across horizons is also similar, though it accumulates somewhat more slowly in

the model.

Panels (e) and (f) report results for volatility dynamics. Panel (e) shows that the scatter

plot of market returns against changes in the VIX is, in gross appearance, extremely similar

in the model and data, while panel (f) shows that their autocorrelations – plotted here again

in terms of the inverse (motivated by the analytic results for the microcosm model) – are

nearly identical out to a year.

The results in this section show that the model is able to match key features of the data

not just qualitatively but also quantitatively.
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Figure 3: Simulations of motivating facts

0 20 40 60 80 100
Years

-1

-0.8

-0.6

-0.4

-0.2

0

Cumulative returns (simulated)

0 20 40 60 80 100
-0.1

-0.05

0

0.05

0.1
Daily returns (simulated)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8
VIX (simulated)

0 50 100 150 200 250
Horizon (days)

-1.5

-1

-0.5

0
Skewness across horizons

Simulation
Data

-0.15 -0.1 -0.05 0 0.05 0.1
Mkt. return

-0.4

-0.2

0

0.2

0.4

C
ha

ng
e 

in
 V

IX

Mkt. return vs. change in VIX

Simulation
Data

0 50 100 150 200 250
Lag (days)

1

2

3

4

5

1/
au

to
co

rr
el

at
io

n

VIX inverse autocorrelations

Simulation
Data

Note: These are the same plots as those in figure 1, but for a 100-year simulation of the quantitative

model.
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Obviously what the model misses is risk premia – it has nothing to say at all about

premia, whether on average or how they vary over time. The point of the exercise is to show

that the joint dynamics that we observe for prices and volatility are a natural consequence

of learning.

6 Estimated volatility dynamics and investor uncer-

tainty

The analytic results in section 3 have specific implications for the dynamics of volatility and

the leverage effect, and we explore them in this section. While the results in the previous

section applied to one particular calibration, the results here are much more general tests

of the model. We begin by estimating the dynamics of conditional volatility, then analyze

volatility of volatility. The various coefficients are all functions of the parameter σY,t. In

some of the regressions we treat it as constant, and we also provide some evidence on whether

that assumption is reasonable. Last, we show how the estimates can be used to obtain an

estimate of κ2,t – agents’ uncertainty about the fundamental value of the stock market, and

we show that the estimate is similar in magnitude to survey evidence on cross-sectional

disagreement.

6.1 Volatility dynamics

6.1.1 Regression setup

Combining equations (8), (6), and (10), we have

d [std (dpt)] =
1

σY,t

Et

[
(dxt)

2]+ 1

σ2
Y,t

(
∆t−1/2skewt→t+∆t (dpt)

1

3

)
dpt −

1

σY,t

[std (dpt)]
2 dt

(22)

If xt has independent increments and σY,t is constant – as in the quantitative model – then

the first term is a constant.

What is particularly interesting about this regression is that it gives two separate esti-

mates of the parameter σY . The coefficient on [std (dpt)]
2 depends on σY since the aver-

age decline in uncertainty depends on the rate of information flow, and the coefficient on

skew×dp depends on σ2
Y for the same reason. In addition to giving two estimates of a struc-

tural parameter, the regression therefore also has a testable implication, that the coefficient

on skew × dp should be the square of that on [std (dpt)]
2.
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We proxy for the second term with the product of the Cboe’s SKEW index (properly

transformed to correspond to a conditional skewness coefficient) multiplied by the CRSP

total market return.18 The dt−1/2 term in parentheses in the middle term corresponds to

the horizon at which skewness is calculated. We treat a unit of time as a day, so dt = 21,

representing 21 trading days, which is the approximate horizon of the Cboe SKEW index

(one calendar month). We include the factor 3, so that the regressor is
(
3× skewCboe

t × 21
)
,

where skewCboe
t is the transformed Cboe SKEW index.

Finally, we proxy for the conditional volatility, std (dpt), with the Cboe’s VIX index,

rescaled consistent with the units for time. The time series are all daily. For the return dpt

we use the log return on the CRSP total market index. The actual regression, then, is the

daily change in V IXt on lagged implied skew times the market return (divided by 3) and

V IX2
t−1

There is a similar regression for the volatility of volatility. Again using (6) and (10) and

combining now with (11), we have

std (dstd (dpt)) =
1

σ2
Y,t

× |skewt→t+∆t (dpt)|
3

× std (dpt) (23)

This says that the volatility of volatility is proportional to volatility itself times conditional

skewness. We again proxy for volatility and skewness using the CBOE indexes. We proxy

for std (dstd (dpt)) with the VVIX index, which is an implied volatility for the VIX itself.19

This regression now gives us a third estimate of σY , and thus an additional testable pre-

diction of the model. Additionally, the equation implies that the coefficient in the regression

should be equal to zero, which is obviously also testable.

Finally, there is a fourth regression, related fairly closely to (22). In each month, we

can estimate the leverage effect from a regression of changes in the VIX on market returns.

According to equation (9), if we then regress the estimated leverage effect in month t on

implied skewness in month t (divided by 3), the coefficient is again an estimate of 1/σ2
Y .

6.1.2 Results

Table 3 reports results of the regression implied by (22). The coefficients are highly statis-

tically significant and have the expected sign. Under the model, if the various assumptions

we made to derive the regression here are true, the coefficient on
(
∆t−1/2skewt→t+∆t (dpt)

1
3

)
18That is, denoting the index value by SKEWCboe

t , we have that the skewness coefficient for returns is
skewt (r) =

(
100− SKEWCboe

t

)
/10.

19Really, the VVIX measures the volatility of the log of the VIX. We therefore multiply the VVIX by the
VIX to get the volatility of the VIX in its own units.
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should be the square of the coefficient on V IX2
t−1 (proxying for [std (dpt)]

2). The bottom

row of the table tests that hypothesis. The t-statistic is -1.05, so the relative values of the

coefficients are well within the range expected given statistical uncertainty.

Table 3: Volatility regressions

(1) (2) (3)
V IX2

t−1 -0.56 -0.68 -0.49
[0.12] [0.38] [0.11]

1
3
√
21
skewt−1dpt 0.46 0.46 0.22

[0.01] [0.01] [0.02]
V IXt−1 0.005

[0.010]
dpt -0.039

[0.004]
Constant

R2 0.62 0.62 0.65
Test of coefficients -0.14

[0.14]

Note: Daily regressions of first differences in the VIX. The skew is the Cboe Skew index, and dp is the

log return on the CRSP total market index. Heteroskedasticity-robust standard errors are reported in

brackets.

In the data, [std (dpt)]
2 is obviously fairly strongly correlated with std (dpt) itself, so one

question is which dominates – the model says it should be [std (dpt)]
2. The second column of

table 3 tests that proposition by including both in the regression. We find that [std (dpt)]
2

does appear to dominate – its t-statistic is larger by a factor of 4 than that for std (dpt), and

it remains marginally statistically significant (at the 10-percent level).

Similarly, we can ask whether it is
(
∆t−1/2skewt→t+∆t (dpt)

1
3

)
dpt that dominates or sim-

ply the return, dpt. The third column of the table tests that by including both variables. In

this case, dpt turns out to have a very slightly higher t-statistic, but both variables remain

individually highly significant. We thus have a less strong confirmation of the model’s pre-

diction here – dpt should have been driven out, but it is not. On the other hand, it still does

not drive out the correct variable,
(
∆t−1/2skewt→t+∆t (dpt)

1
3

)
dpt. One possible explanation

for this fact is that the Cboe SKEW index may be relatively noisy, since it is a higher-order

moment, which would reduce the explanatory power of
(
∆t−1/2skewt→t+∆t (dpt)

1
3

)
dpt (and

also bias its coefficient toward zero).

Table 4 report results from the regression (23). The first column includes a constant –
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which is not estimated to be statistically significantly different from zero, consistent with

the model – and the second column eliminates the constant. The coefficient estimate of

about 0.30 is, again, an estimate of 1/σ2
Y , and consistent with the estimates from table 3.

The R2 in the regression ideally should be 1, and it is certainly not, but at the same time

it is economically large. In addition to simple misspecification, deviations could come from

measurement error in the asset prices or time variation in risk premia.

Table 4: Volatility-of-volatility regressions

(1) (2)
1
2
skewtV IXt 0.30 0.32

[0.05] [0.02]
Constant 5.9×10−5 N/A

[8.7× 10−5]
R2 0.47 0.85

Note: Daily regressions of the VVIX. Newey–West t-statistics are reported in brackets. Note that in the

second column the R-squared is calculated based on the total sum of squares without demeaning, which

is why it is much larger.

6.1.3 Estimates of the noise in investors’ signals

It is possible to also obtain estimates of σY on a rolling basis. One that is very direct is

to just us (23), since that, in the absence of any error, gives a direct estimate of σY in

each period. However, obviously there is some noise, again both due to misspecification

(the model is imperfect) and potential noise in asset prices. We therefore report results for

five-year rolling windows. The coefficient in (23) corresponds to 1/σ2
Y .

Figure 4 plots the rolling estimates. Over the available sample, it appears relatively

stable, moving between about 0.3 and 0.4.

We can also get a rolling estimate based on the leverage effect. Specifically, combining

equations (9) and (10), we have

cov
(
dpt, d

[
std (dpt) dt

−1/2
])

var (dpt)
=

skewt→t+∆t (dpt)

3σ2
Y,t

(24)

The left-hand side is the coefficient from a regression of changes in volatility on changes in

prices, which we can run each month. The ratio of that to skewt→t+∆t (dpt) at the beginning

of the month is again an estimate of 1/σ2
Y .

This second time series for 1/σ2
Y has somewhat lower values, but is broadly consistent
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Figure 4: Rolling five-year estimate of 1/σ2
Y,t
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Note: The blue line is the estimate of 1/σ2
Y from equation (23) over a five-year rolling window. The

orange line is based on the leverage effect regression. Confidence bands are calculated using Newey–West

with 63 lags (three months of trading days).

with the first. Again, they are both fairly stable over time – though in the case of the

leverage effect the confidence bands are significantly wider. That does not necessary rule

out the possibility that it has some variation at higher frequencies. Distinguishing that from

measurement error is subtle, though, and we leave it for future work.

6.1.4 Comparing estimates of σY

At this point we have four different estimates of σY . Figure 6.1.4 compares them.

Estimate (1) is from the coefficient on V IXt−1 in equation (22); (2) is from the coefficient

on lagged implied skewness times market returns in the same regression; (3) is from the

volatility-of-volatility regression (23); and (4) is from the regression of the leverage effect on

lagged skewness (the full-sample version of the orange line in figure 4). The four estimates

are all surprisingly consistent, ranging between about 1.5 and 1.8. Estimates (2)-(4) are all

forms of the relationship between skewness, returns, and volatility. Estimate (1) is somewhat

more independent, being based on the rate of mean reversion in volatility.

Again, part of what makes these estimates notable is that there are in a sense nonpara-

metric: They do not require knowledge of the true dynamics of fundamentals. Additionally,

the estimates are not completely inconsistent with the value of 2.89 used in the calibration
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Figure 5: Comparison of estimates of σY
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Note: Each dot is an estimate of σY , and the whiskers represent 95

(which was obtained from a moment-matching exercise). While the value is higher than those

implied from skewness and the leverage effect (estimates (2)-(4)), it is within the confidence

band for the estimate based on mean reversion in volatility.

6.1.5 Estimates of investors’ uncertainty about fundamentals

Having estimates for σY allows us to then use the volatility and skewness of stock market

returns to reveal the standard deviation and skewness of agents’ posteriors for fundamentals.

Specifically, recall that

std (dpt) =
κ2,t

σY,t

dt1/2 (25)

⇒ κ
1/2
2,t =

(
std (dpt)σY,tdt

−1/2
)1/2

(26)

Recall that the scaling of the estimates is for a unit time interval being equal to a day.

The observed historical daily standard deviation of stock returns is about 1 percent. If

σY,t is between 1.26 and 3.10 (based on the coefficient on V IXt−1 in equation (22), which
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is the most conservative of the confidence intervals), that implies that agents’ posterior

standard deviation is between 11.2 and 17.6 percent. The ±2 standard deviation range for

fundamentals around the current price for the aggregate stock market is then between ±22.4

and ±35.2 percent.

Similarly, we can get an estimate of average skewness in beliefs. One-month return skew-

ness is historically approximately -2.2 (based on the average of the SKEW index). Plugging

that into (10) along with the estimates of κ2 and σY yields an estimate for the skewness

of fundamentals between -0.29 and -1.13. In the time series, the estimate of conditional

skewness of fundamentals is proportional to the conditional skewness of returns divided by

the square root of the conditional standard deviation of returns.

We have not yet found a survey that directly measures investors’ uncertainty about

fundamentals (e.g. that asks them about probabilities that the fundamental value might

fall in different ranges, as the Survey of Consumer Expectations and Survey of Professional

Forecasters do for inflation and other variables). However, uncertainty is sometimes proxied

for by disagreement, so a survey giving a cross-section of estimates of fundamental value

would be one way to validate our estimate of average uncertainty.

The Investor Behavior Project at Yale has a survey of institutional investors that asks

the following question: “What do you think would be a sensible level for the Dow Jones

Industrial Average based on your assessment of U.S. corporate strength (fundamentals)?”

We interpret the answer to that question as each investor’s estimate of E [xt | Y t]. To

calculate cross-sectional dispersion, given that the surveys are completed on different dates

by different respondents, we calculate the average squared difference between each investor’s

reported fundamental value and the actual value at the time of the survey. The square root

of that average represents a measure of the cross-sectional standard deviation.

The data runs from August, 1993 to July, 2024 and has 8,242 observations. In that

sample, we estimate the cross-sectional standard deviation to be 17.0 percent, which fits

inside the confidence band for uncertainty from equation (26) of [11.2,17.6]. That said, if we

used the narrower confidence bands from the other estimates of σY , the implied uncertainty

would be somewhat lower.

6.1.6 Summary

Overall, this section shows that the model’s predictions for volatility dynamics match the

data well. The prediction for nonlinear mean reversion – via a quadratic term in the re-

gression – is well confirmed, and in fact it drives out a linear mean reversion term. The

prediction that market returns should be interacted with a measure of skewness appears not
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inconsistent with the data, but it is also not dominant – raw returns themselves are still a

significant predictor of the change in conditional volatility.

Finally, the coefficients themselves can be mapped into an estimate of σY , the noise in

investors’ signals. The model implies that the rate of mean reversion depends on that noise,

and the estimated confidence interval for that quantity, [1.26, 3.10], accords well with the

value that we also find works well in the calibration. That estimate then also implies that

investors’ uncertainty about the true fundamental value of stocks – if they had complete

information – is ±22− 35 percent. Moreover, the implied uncertainty matches well with the

Yale IBP survey measure of cross-sectional disagreement.

7 Conclusion

This paper’s main results are fundamentally about how information affects the various mo-

ments of agents’ beliefs in a very simple but standard Bayesian filtering setting. The analysis

is motivated by behavior of the stock market, and the analysis shows both that the theoretical

results can help elucidate one mechanism that generates comovements among many higher

moments of returns, and also that the mechanism can generate quantitatively reasonable

behavior.

But the general model setup that we solve is certainly not applicable just to the aggregate

stock market. The results have implications for beliefs in any setting, whether that be other

financial markets, surveys, or competitive settings.
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Gaussian noise: Properties of the minimum mean-square error,” IEEE Transactions on

Information Theory, 2011, 57 (4), 2371–2385.

Hamilton, James D, “A new approach to the economic analysis of nonstationary time

series and the business cycle,” Econometrica: Journal of the econometric society, 1989,

pp. 357–384.

Johannes, Michael, Lars A Lochstoer, and Yiqun Mou, “Learning about consumption

dynamics,” The Journal of finance, 2016, 71 (2), 551–600.

Kozlowski, Julian, Laura Veldkamp, and Venky Venkateswaran, “The tail that

keeps the riskless rate low,” NBER Macroeconomics Annual, 2018, 33 (1), 253–283.

Lettau, Martin and Sydney Ludvigson, “Measuring and Modeling Variation in the

Risk-Return Tradeoff,” in Yacine Ait-Sahalia and Lars P. Hansen, eds., Handbook of

Financial Econometrics, Vol. 1, Elsevier Science B.V., North Holland, Amsterdam,

2010, pp. 617–690.

Liptser, Robert S and Albert N Shiryaev, Statistics of Random Processes: I. General

Theory, Springer Science & Business Media, 2013.

Lukacs, Eugene, Characteristic Functions, second ed., New York: Hafner Publishing Com-

pany, 1970.

Mandelbrot, Benoit, “The Variation of Certain Speculative Prices,” Journal of Business,

1963, 36 (4), 394–419.

, Adlai Fisher, and Laurent Calvet, “A Multifractal Model of Asset Returns,”

1997. Working paper.

Merton, Robert C, “On estimating the expected return on the market: An exploratory

investigation,” Journal of financial economics, 1980, 8 (4), 323–361.

Moreira, Alan and Tyler Muir, “Volatility-managed portfolios,” The Journal of Finance,

2017, 72 (4), 1611–1644.

Orlik, Anna and Laura Veldkamp, “Understanding uncertainty shocks and the role of

black swans,” Journal of Economic Theory, 2024, p. 105905.

Revuz, Daniel and Marc Yor, Continuous Martingales and Brownian Motion, third ed.,

Vol. 293, Springer Science & Business Media, 1999.

33



Taleb, Nassim Nicholas and Raphael Douady, “Mathematical definition, mapping,

and detection of (anti) fragility,” Quantitative Finance, 2013, 13 (11), 1677–1689.

Veronesi, Pietro, “Stock market overreactions to bad news in good times: a rational

expectations equilibrium model,” The Review of Financial Studies, 1999, 12 (5), 975–

1007.

Wachter, Jessica and Yicheng Zhu, “Learning with Rare Disasters,” 2023. Working

paper.

Weitzman, Martin L, “Subjective expectations and asset-return puzzles,” American Eco-

nomic Review, 2007, 97 (4), 1102–1130.

A.1 Proofs

A.1.1 Theorem 1

A.1.1.1 Assumptions

Assumption 1 The net present value of cash flows, xt, follows a Feller process with bounded

and smooth functions in the domain of its extended infinitesimal generator.1

Assumption 2 Almost surely,

∫ t

0

|xs|ds < ∞ for all t, and

∫ t

0

E[x2
s]ds < ∞ for all t.

Assumption 3 For all t, the noise volatility satisfies

P
(∫ t

0

σ2
Y,sds < ∞

)
= 1, (A.1)

0 < σ2 ≤ σ2
Y,t, (A.2)∣∣σY,t − σỸ ,t

∣∣2 ≤ L1

∫ t

0

(Ys − Ỹs)
2dK(s) + L2(Yt − Ỹt)

2, (A.3)

σ2
Y,t ≤ L1

∫ t

0

(1 + Y 2
s )dK(s) + L2(1 + Y 2

t ), (A.4)

1Feller processes are the subset of Markov processes for which the transition kernel varies continuously
with the state. Throughout, we work with the càdlàg modification of xt. For the definition of Feller processes
and a proof of the existence of their càdlàg modification see Chapter 3, Section 2 of (Revuz and Yor 1999).
If Z is a Feller process, a measurable function f is said to belong to the domain of the extended infinitesimal
generator of Z if there exists a measurable function Gf such that, a.s.,

∫ t

0
|Gf (Zs)|ds < ∞ for every t, and

f(Zt)−f(Z0)−
∫ t

0
Gf (Zs)ds is a right-continuous martingale for every initial state z ((Revuz and Yor 1999),

pg. 285).
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where Y and Ỹ are two different realizations of the signal process, L1 and L2 are non-negative

constants, and K(t) is a non-decreasing right-continuous function satisfying 0 ≤ K(t) ≤ 1

for all t.

A.1.1.2 Proof

Lemma 1 Let φx,t(ω) ≡ E[exp(iωxt)|Y t] denote the characteristic function of the posterior

distribution of xt conditional on Y t. If Assumptions 1–3 are satisfied, then

dφx,t(ω) = Et[d exp(iωxt)] + covt(xt, exp(iωxt))
dYt − Et[xt]dt

σ2
Y,t

,

where Et and covt denote the expectation and covariance operators, respectively, conditional

on Y t.

Proof. The lemma obtains as an application of Theorem 8.1 of (Liptser and Shiryaev 2013)

by setting ht → exp(iωxt), ξt → Yt, At → xt, and Bt(ξ) → σY,t.
2 We proceed by verifying

that conditions (8.1)–(8.9) of (Liptser and Shiryaev 2013) are satisfied.

Equation (8.2) is simply equation (2) of the paper in integral form. Since f(x) ≡ exp(iωx)

is a smooth and bounded function, by Assumption 1, there exists a measurable function Gf

such that, almost surely,
∫ t

0
|Gf (xs)|ds < ∞ for every t and Mt ≡ f(xt)−f(x0)−

∫ t

0
Gf (xs)ds

is a right-continuous martingale. Therefore, condition (8.1) is satisfied. Furthermore, since

f is a bounded function, so is Gf . Consequently, conditions (8.6) and (8.7) are also sat-

isfied. Conditions (8.4), (8.5), (8.9), and the second part of condition (8.3) are satisfied

by Assumption 3. Finally, condition (8.8) and the first part of condition (8.3) are satis-

fied by Assumption 2. Applying Theorem 8.1 and noting that the Brownian motion Wt is

independent of xt, we get

Et[exp(iωxt)] = E0[exp(iωx0)] +

∫ t

0

Es[Gf (xs)]ds+

∫ t

0

covs (xs, exp(iωxs))

σY,s

dW s, (A.5)

where

W t =

∫ t

0

dYs − Es[xs]ds

σY,s

. (A.6)

2The results cited here are stated for real-valued functions. However, they can trivially be extended to
the complex-valued function x 7→ exp(iωx) using the identity exp(iωx) = cos(ωx)+ i sin(ωx) and separately
considering the real and imaginary parts of the function.
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Or equivalently,

dEt[exp(iωxt)] = Et[Gf (xt)]dt+ covt(xt, exp(iωxt))
dYt − Et[xt]dt

σ2
Y,t

. (A.7)

On the other hand, by the definition of Gf ,

d exp(iωxt)− Gf (xt)dt = dMt, (A.8)

where Mt is a martingale. Therefore, Et[Gf (xt)]dt = Et[d exp(iωxt)].

Theorem 1 Let κk,t denote the kth cumulant of the posterior distribution of xt conditional

on Y t. Suppose the n+ 1th moment of the posterior distribution and the nth moment of xt

exist, and Assumptions 1–3 are satisfied. Then for every k ≤ n,

dκk,t = Et[d(x
k
t )] +

κk+1,t

σ2
Y,t

(dYt − Et[xt]dt)−
1

σ2
Y,t

k∑
j=2

α
(k)
j κj,tκk−j+2,tdt, (A.9)

where α
(k)
j are constants, defined recursively as follows: α

(2)
2 = 1, and

α
(k+1)
j =


1 + α

(k)
j if j = 2

α
(k)
j−1 + α

(k)
j if 3 ≤ j ≤ k

α
(k)
j−1 if j = k + 1

(A.10)

Proof. By Lemma 1 and Itô’s lemma,

d logφx,t(ω) =
Et[d exp(iωxt)]

Et[exp(iωxt)]
+
covt(xt, exp(iωxt))

Et[exp(iωxt)]

dYt − Et[xt]dt

σ2
Y,t

− 1

2σ2
Y,t

(
covt(xt, exp(iωxt))

Et[exp(iωxt)]

)2

dt.

(A.11)

Since the posterior distribution of xt has n+1 moments, it also has n+1 cumulants and the

corresponding characteristic function has n + 1 derivatives at ω = 0, where the cumulants

are related to the derivatives of the characteristic function via3

κk,t = i−k dk

dωk
logφx,t(ω)

∣∣∣∣
ω=0

(A.12)

The key step is to differentiate equation (A.11). Differentiating the left-hand side with

3All the results on characteristic functions, moments, and cumulants used here can be found in Chapter
2 of (Lukacs 1970).
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respect to ω and applying the dominated convergence theorem we get

d

(
dk

dωk
logφx,t(ω)

∣∣∣∣
ω=0

)
= ikdκk,t. (A.13)

For the first term on the right-hand side of (A.11), since xt has n moments, for any ω in

a sufficiently small neighborhood of the origin,

Et[d exp(iωxt)] =
n+1∑
j=0

(iω)j

j!
Et[d(x

j
t)] + o(ωn+1). (A.14)

Therefore,

dk

dωk
Et[d exp(iωxt)]

∣∣∣∣
ω=0

= ik
n+1∑
j=k

(iω)j−k

(j − k)!
Et[d(x

j
t)]

∣∣∣∣
ω=0

= ikEt[d(x
k
t )] (A.15)

for any k ≤ n+ 1. On the other hand,

Et[d exp(iωxt)]
∣∣
ω=0

= 0, (A.16)

Et[exp(iωxt)]
∣∣
ω=0

= 1. (A.17)

Consequently, for all k ≤ n+ 1,

dk

dωk

Et[d exp(iωxt)]

Et[exp(iωxt)]

∣∣∣∣
ω=0

(A.18)

=
1

Et[exp(iωxt)]

dk

dωk
Et[d exp(iωxt)]

∣∣∣∣
ω=0

+ Et[d exp(iωxt)]
dk

dωk
(Et[exp(iωxt)])

−1

∣∣∣∣
ω=0

(A.19)

= ikEt[d(x
k
t )]. (A.20)

For the second term on the right in (A.11), note that

covt(xt, exp(iωxt))

Et[exp(iωxt)]
=

Et[xt exp(iωxt)]

Et[exp(iωxt)]
− Et[xt] = i−1 d

dω
logφx,t(ω)− Et[xt]. (A.21)
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Therefore,

dk

dωk

covt(xt, exp(iωxt))

Et[exp(iωxt)]

∣∣∣∣
ω=0

dYt − Et[xt]dt

σ2
Y,t

= i−1 dk+1

dωk+1
logφx,t(ω)

∣∣∣∣
ω=0

dYt − Et[xt]dt

σ2
Y,t

(A.22)

= ik
κk+1,t

σ2
Y,t

(dYt − Et[xt]dt) . (A.23)

Finally, we compute the derivative of the last term in (A.11) using induction. To simplify

the notation, let f ′−1 d
dω

logφx,t(ω) and c ≡ Et[xt]. We are interested in the kth derivative of
1
2
(f ′ (ω)− c)2 evaluated at ω = 0. In what follows, we first prove by induction that

dk

dωk

(f ′ (ω)− c)2

2
= (f ′ (ω)− c) f ′(k+1)(ω) +

k∑
j=2

α
(k)
j f (j)(ω)f (k−j+2)(ω), (A.24)

where constants α
(k+1)
j are as in the statement of the theorem. Note that

d

dω

(f ′ (ω)− c)2

2
= (f ′(ω)− c)f ′′(ω), (A.25)

d2

dω2

(f ′ (ω)− c)2

2
= (f ′(ω)− c)f ′′′(ω) + (f ′′2. (A.26)

Therefore, the induction base holds with

α
(2)
2 = 1.

Now suppose the induction hypothesis holds for k. Then,

dk+1

dωk+1

(f ′ (ω)− c)2

2
= (f ′ (ω)− c) f ′(k+2)(ω) + f (2)(ω)f (k+1)(ω) (A.27)

+
k∑

j=2

α
(k)
j f (j+1)(ω)f (k−j+2)(ω) +

k∑
j=2

α
(k)
j f (j)(ω)f (k−j+3)(ω) (A.28)

= (f ′ (ω)− c) f ′(k+2)(ω) + f (2)(ω)f (k+1)(ω) (A.29)

+
k+1∑
j=3

α
(k)
j−1f

(j)(ω)f (k−j+3)(ω) +
k∑

j=2

α
(k)
j f (j)(ω)f (k−j+3)(ω) (A.30)

= (f ′ (ω)− c) f ′(k+2)(ω) +
k∑

j=2

α
(k+1)
j f (j)(ω)f (k−j+3)(ω), (A.31)

where α
(k+1)
j is given by (A.10). Noting that f ′(0) = c and i−k+1f (k)(0) = κk,t, we get the
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following expression for the derivative of the last term in (A.11):

dk

dωk

1

2σ2
Y,t

(
covt(exp(iωxt), xt)

Et[exp(iωxt)]

)2

dt

∣∣∣∣
ω=0

=
ik

σ2
Y,t

k∑
j=2

α
(k)
j κj,tκk−j+2,tdt. (A.32)

Putting everything together and canceling the ik constants completes the proof of the theo-

rem.

Corollary 1 Suppose the Assumptions of Theorem 1 are satisfied, and additionally xt is a

martingale. Then,

dpt =
κ2,t

σ2
Y,t

(dYt − Et[xt]dt) , (A.33)

d vart[xt] =
κ3,t

σ2
Y,t

(dYt − Et[xt]dt)−
κ2
2,t

σ2
Y,t

dt+ Et[(dxt)
2], (A.34)

dEt

[
(xt − Et [xt])

3] = κ4,t

σ2
Y,t

(dYt − Et[xt]dt)−
3κ2,tκ3,t

σ2
Y,t

dt+ Et[(dxt)
3] + 3 covt(xt, (dxt)

2).

(A.35)

Corollary 1 Suppose the Assumptions of Theorem 1 are satisfied, and additionally xt has

independent increments. Then,

dpt =
κ2,t

σ2
Y,t

(dYt − Et[xt]dt) + Et[dxt], (A.36)

d vart[xt] =
κ3,t

σ2
Y,t

(dYt − Et[xt]dt)−
κ2
2,t

σ2
Y,t

dt+ Et[(dxt)
2], (A.37)

dEt

[
(xt − Et [xt])

3] = κ4,t

σ2
Y,t

(dYt − Et[xt]dt)−
3κ2,tκ3,t

σ2
Y,t

dt+ Et[(dxt)
3]. (A.38)

A.1.2 Local skewness derivation

E

[(
k2
σ2

ε+
k3
2σ2

ε2 − k3
2σ2

σ2

)2
]
= k2

2σ
−2dt (A.39)

E

[(
k2
σ2

ε+
k3
2σ2

ε2 − k3
2
dt

)3
]

= 3
k2
2

σ4

k3
2σ2

3σ4dt2 − 3
k2
2

σ4

k3
2σ2

σ4dt2 (A.40)

= 3k2
2k3σ

−2dt2 (A.41)

skew =
3k2

2k3σ
−2dt2

k3
2σ

−3dt3/2
= 3k−1

2 k3σ
−5dt1/2 (A.42)

A.6



A.1.3 volatility regression derivation

skewt (dpt) ≈ 3κ3,tκ
−1
2,tσY,tdt

1/2 (A.43)

dκ2,t =
κ3,t

σ2
Y,t

(dYt − Et [xt] dt) + Et

[
d
(
x2
t

)]
−

κ2
2,t

σ2
Y,t

dt (A.44)

std (dpt) =
κ2,t

σY,t

dt1/2 (A.45)

(
skewt (dpt) /dt

1/2
) 1
3
σ−1
Y,t ≈

κ3,t

κ2,t

(A.46)

****

dκ2,t

σY,t

=
1

σY,t

κ3,t

σ2
Y,t

(dYt − Et [xt] dt) + Et

[
d
(
x2
t

)]
− 1

σY,t

(
κ2
2,t

σ2
Y,t

)
dt (A.47)

dκ2,t

σY,t

=
1

σY,t

κ3,t

κ2,t

κ2,t

σ2
Y,t

(dYt − Et [xt] dt) + Et

[
d
(
x2
t

)]
− 1

σY,t

(
κ2
2,t

σ2
Y,t

)
dt (A.48)

dκ2,t

σY,t

=
1

σ2
Y,t

(
skewt (dpt) /dt

1/2
) 1
3

κ2,t

σ2
Y,t

(dYt − Et [xt] dt) + Et

[
d
(
x2
t

)]
− 1

σY,t

(
κ2
2,t

σ2
Y,t

)
dt(A.49)

****

A.1.4 Exponential model solution

A.1.5 Moments for parameter selection
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