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Abstract

We quantify investors’preferences over the dynamics of shocks by deriving frequency-

specific risk prices that capture the price of risk of consumption fluctuations at each

frequency. The frequency-specific risk prices are derived analytically for leading mod-

els. The decomposition helps measure the importance of economic fluctuations at

different frequencies. We precisely quantify the meaning of “long-run” in the context

of Epstein—Zin preferences —centuries —and measure the exact relevance of business-

cycle fluctuations. Last, we estimate frequency-specific risk prices and show that cycles

longer than the business cycle —long-run risks —are significantly priced in the equity

market.
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1 Introduction

This paper develops a novel frequency-domain decomposition of innovations to the pricing

kernel. The decomposition quantifies exactly how economic fluctuations at different fre-

quencies are priced and reveals previously overlooked constraints imposed by widely used

preference specifications. The frequency-domain tools also lead to a novel estimation method

that provides new evidence on the pricing of economic risks that is both stronger and more

statistically powerful than previous methods. Low-frequency fluctuations in the economy

are significantly priced across a wide range of specifications, while business-cycle and higher-

frequency fluctuations are not, which highlights the importance of long-run risks in deter-

mining risk premia.

Our frequency-domain decomposition applies to affi ne asset pricing models, including the

CAPM, the consumption CAPM, the standard log-linearized version of Epstein—Zin (1991)

preferences, and the ICAPM (Merton, 1973; Campbell, 1993). The dynamic effects of shocks

have become central in the recent asset pricing literature, and we argue that the frequency

domain is the natural setting in which to analyze dynamics.

The dynamic response of the economy to a shock is usually summarized in the time

domain by an impulse response function (IRF). Long-run shocks to consumption growth

that have large risk prices under Epstein—Zin preferences — for example, those studied in

Bansal and Yaron (2004) — have IRFs that decay slowly. We map the IRF of a shock

into the frequency domain. A shock that has strong long-run effects has high power at

low frequencies, whereas shocks that dissipate rapidly have relatively more power at high

frequencies. We refer to the frequency-domain version of the IRF as the impulse transfer

function.

Our theoretical result is that the price of risk for a shock depends on the integral of

the impulse transfer function over the set of all frequencies ω, weighted by a function Z(ω).

Z (ω) measures the frequency-specific price of risk and is determined purely by investor
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preferences, not the dynamics of consumption. We derive Z(ω) in closed form for various

theoretical models and estimate it empirically in equity markets.

The spectral representation we describe is useful for two main reasons. First, it yields

quantitative insights about the importance of the dynamics of shocks for asset prices in

different models. We show that standard calibrations of Epstein—Zin preferences imply that

more than half of the mass of the spectral weighting function lies on cycles lasting a century

or longer. While it is certainly understood that Epstein—Zin preferences place weight on

low-frequency shocks, this is the first paper to quantify exactly what “long-run”means and

show how large the weight on those frequencies is. Similarly, we show that models with

internal habit formation place the majority of their mass on high frequencies.1

The analysis also reveals that standard preference specifications are very tightly con-

strained in certain regards, which leads to sharp and testable predictions. Epstein—Zin

preferences isolate their weight almost exclusively on very low frequencies, internal habit

formation isolates its weight on high frequencies, and both have monotone weighting func-

tions. So if we can even just measure the average slope of the spectral weighting function, we

can empirically distinguish the two models. Moreover, due to the monotonicity of the weight-

ing functions, neither model allows investors to express a particular aversion to fluctuations

at mid-range frequencies, e.g. business cycles, a constraint that has not been highlighted

previously.

The second contribution of the paper is to provide estimates of the spectral weighting

function in US equity markets. We begin by showing that when we apply the standard

Euler equation estimation methodology of Hansen and Singleton (1982) using the specific

functional forms implied by utility-based models, no coeffi cients are consistently significant

across various groups of test assets (and the implied risk aversion parameters at the point

estimates are implausibly high, though the confidence bands also cover more plausible val-

1See also Epstein et al. (2014), who quantitatively analyze the preference for the timing of the resolution
of uncertainty under Epstein—Zin preferences.
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ues). That result would usually be taken to imply that consumption is unpriced and that the

models are not a good description of risk premia in the equity market. We argue, though,

that such a conclusion is premature, and depends on the extremely tight constraints imposed

by the models. When we generalize the models to allow investors to price fluctuations in

broader ranges of frequencies, we find that low-frequency shocks to consumption growth are

in fact consistently priced in equity markets. The key is simply that we must allow for the

possibility that the concept of “long-run”that is priced is a shock that lasts longer than the

business cycle, rather than a shock that lasts hundreds of years as implied by Epstein—Zin

preferences.

In addition to allowing us to estimate more general specifications for the pricing kernel,

the frequency-domain analysis also suggests a novel way to test asset pricing models. Stan-

dard tests, e.g. the Gibbons, Ross, and Shanken (1989) and GMM overidentifying tests, are

often diffi cult to interpret, because their rejections are in some sense statistical and do not

have a clear economic interpretation. The tests tell us that some portfolios are unpriced,

but they do not tell us anything about the economic source of the failure.

We suggest instead that models can be tested against parametric alternatives (as sug-

gested by Andrews and Ploberger (1996)). As an example, consider the problem of testing

whether habit formation gives a good description of investor preferences. Habit formation

implies that the covariance of an asset’s return with high-frequency shocks to consumption

growth should determine its average return. We test the model by asking whether long-run

risks are also priced. When we find that those long-run shocks are significantly priced, not

only do we reject habit formation, but we give economic meaning to its failure —it is incon-

sistent with the fact that investors are averse to long-run risks. Similarly, we do not simply

fail to reject that the price of risk for high-frequency fluctuations is zero; we will rather show

that low-frequency fluctuations are priced.

To summarize, then, the analysis of asset pricing models in the frequency domain gives

two novel results: it quantifies precisely howmodels place weight on different frequencies (and
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clarifies exactly what “long-run risk”actually means for standard Epstein—Zin investors), and

it delivers novel and consistent evidence showing that investors are averse to low-frequency

economic fluctuations.

There is very little extant analysis of preference-based asset pricing in the frequency do-

main.2 Otrok, Ravikumar, and Whiteman (2002) and Yu (2012) are two recent examples.

While those papers also present spectral decompositions of prices and consumption fluctua-

tions, the object of the decomposition is different from ours. Instead of studying how shocks

at different frequencies are priced by an investor, they ask how the price of a consumption

claim depends on the spectral density of consumption and its relation with returns. Since

the price of the asset reflects a combination of preferences and dynamics, it is impossible to

evaluate the relative importance of the two beyond very specific cases.3 ,4

Our paper is closely related to a vast empirical literature studying the importance of

dynamics for asset pricing in the time domain. A number of papers study the relationship

between asset returns and consumption growth at long horizons as methods of testing the

implications of Epstein—Zin or power utility.5 We complement that work by estimating how

fluctuations in consumption growth at different frequencies are priced, and in a way that

imposes weaker restrictions.

Finally, our work is related to other important decompositions of the stochastic discount

factor (SDF), most notably Alvarez and Jermann (2005), Hansen and Scheinkman (2009)

2Frequency-domain tools have been applied in finance for other purposes, for example for estimation or
valuation of derivatives, as in Carr and Madan (1999), Duffi e, Pan and Singleton (2000), and Singleton
(2001).

3Calvet and Fisher (2007), Ortu, Tamoni and Tebaldi (2013) and Bandi and Tamoni (2014) study a
different decomposition of the consumption and returns processes into components operating at different
time scales, exploring their covariance and relation with expected returns at different time scales, in reduced
form and within the framework of Epstein—Zin utility. The focus of these papers is in disentangling the
different components of the consumption and returns processes, while we provide a decomposition of both
the consumption processes and, most importantly, the agent’s risk preferences, for any utility function.

4See also Alvarez and Jermann (2004), who measure the cost of business-cycle fluctuations by computing
the price of a claim to the business-cycle component of consumption.

5For example, Parker and Julliard (2005); Malloy, Moskowitz, and Vissing-Jorgensen (2009); Bansal,
Dittmar, and Lundblad (2005); Yu (2012); Daniel and Marshall (1997); van Binsbergen, Brandt and Koijen
(2012); Hansen, Heaton, and Li (2008).
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and Borovicka et al. (2011). Those decompositions study the dynamic effects of shocks for

the evolution of the stochastic discount factor over time and are closely related to work on

the term structure of risk premia.6 Rather than studying how a single shock today affects

the SDF in the future, we study how the innovation to the SDF today depends on news

about consumption in the future. In other words, those papers analyze the impulse response

function of the SDF, while we study the impulse response function of consumption and how

it affects the one-period innovation in the SDF. The two approaches are complementary.

Our decomposition explains risk premia (since the risk premium of any asset depends only

on the one-period innovation in the SDF), rather than the term structure of prices of claim

to future consumption.

1.1 Notation

We use the following conventions in our notation:

ct: lower-case italic type represents a scalar variable or function

Z: upper-case italic type represents a scalar-valued function in the frequency domain

xt: lower-case bold type represents a vector

Φ: upper-case bold type represents a matrix or matrix-valued function

We also follow standard conventions for denoting widely used operators such as expecta-

tions, lags, and first differences.

2 Frequency-specific risk prices

We derive our spectral decomposition of the pricing kernel under two main assumptions.

First, the log pricing kernel, mt, depends on the current and future values of a scalar priced

variable, xt (often consumption growth or market returns). Second, the dynamics of the

6See, for example, Hansen, Heaton, and Li (2008) and Lettau and Wachter (2007). Backus, Chernov, and
Zin (2014) study how the dispersion of the pricing kernel varies by horizon.
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economy are described by a vector moving average process xt which includes xt as an element.

Assumption 1: Structure of the SDF.

Denote the log pricing kernel (or stochastic discount factor, SDF) mt+1.7 We assume

that mt depends on current and future values of xt:

mt+1 = f(It)−∆Et+1

∞∑
k=0

zkxt+1+k (1)

where f(It) is some unspecified function of the time-t information set It, Et is the expectation

operator conditional on information available on date t, and ∆Et+1 ≡ Et+1 − Et denotes

the innovation in expectations. This specification is suffi ciently flexible to match standard

empirical applications of power utility, habit formation, Epstein—Zin preferences, the CAPM

and the ICAPM (in some cases under log-linearization). Intuitively, equation (1) simply says

that the innovation to the SDF depends on news about the priced variable in the future,

with weights zk at each future horizon k. It implies that risk prices are constant, but we

discuss how to relax that assumption below.

Assumption 2: Dynamics of the economy.

xt is driven by an n-dimensional vector moving average process

xt = b1xt (2)

xt = Γ (L) εt (3)

where xt has dimension n×1, L is the lag operator, Γ (L) is an n×n matrix lag polynomial,

Γ (L) =

∞∑
k=0

ΓkL
k (4)

7In our derivation we assume that the log SDF, mt+1, is linear in the news about future values of the
priced variable xt, because the most widely used models specify an affi ne form for the log SDF. The same
decomposition holds if we assume that the level of the SDF, exp (mt+1), is linear in the news terms. We also
do not take a position on whether mt is the pricing kernel for all markets or whether there is some sort of
market segmentation, nor do we assume at this point that there is a representative investor.
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and εt is an n×1 vector of (potentially correlated) martingale difference sequences. Note that

we make no assumptions about the conditional distribution of the innovations εt except that

it has a mean of zero. εt therefore could include disasters, it could be heteroskedastic, and it

could have fat tails. Furthermore, note that the elements of εt need not be orthogonal or in

any sense represent identified “structural”shocks as in the structural vector autoregression

literature. For example, they could all have nonzero correlations. Finally, we do not at

this point make any specific assumptions about the function Γ (L). Different asset pricing

models will place different constraints on admissible forms of Γ (L). We instead make the

high-level assumption that the variance of mt+1 is finite, which will imply constraints on

Γ (L) depending on {zk}.

Throughout the paper bj denotes a conformable (here, 1×n) vector equal to 1 in element

j and zero elsewhere. We assume without loss of generality that xt is the first element of xt.

Furthermore, we require Γ (L) to have properties suffi cient to ensure that xt is covariance

stationary.

Combining assumptions 1 and 2, we can write the innovations to the pricing kernel as a

function of the impulse-response functions (IRFs) of xt to each of the shocks. In particular,

for the jth element of εt, εj,t, the IRF of xt is the set of gj,k for all horizons k defined as:

gj,k ≡

 b1Γkb
′
j for k ≥ 0

0 otherwise
(5)

We can then rewrite the innovation to the log SDF as:

∆Et+1mt+1 = −
∑
j

( ∞∑
k=0

zk gj,k

)
εj,t+1 (6)

and we refer to
∑∞

k=0 zkgj,k as the price of risk for shock j. In this representation, the effect

of a shock εj,t+1 on the pricing kernel is decomposed by horizon: for every horizon k, the

effect of the shock depends on the response of x at that horizon (captured by gj,k) and on
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the horizon-specific price of risk zk.

Our main result is a spectral decomposition in which the price of risk of a shock j depends

on the response of x to that shock at each frequency ω (Gj(ω)) and on a frequency-specific

price of risk, Z(ω) (see the appendix for all proofs).

Result 1. Under Assumptions 1 and 2, the innovations to the log SDF are

∆Et+1mt+1 = −
∑
j

(
1

2π

∫ π

−π
Z (ω)Gj (ω) dω

)
εj,t+1 (7)

where Z (ω) is a weighting function depending only on the risk prices {zk}, and Gj (ω)

measures the dynamic effects of εj,t on x in the frequency domain,

Z(ω) ≡ z0 + 2
∞∑
k=1

zk cos (ωk) (8)

Gj(ω) ≡
∞∑
k=0

cos (ωk) gj,k (9)

The price of risk for a shock εj is then

∞∑
k=0

zkgj,k =
1

2π

∫ π

−π
Z (ω)Gj (ω) dω (10)

Equation (10) allows us to represent the information contained in the infinitely long IRF

{gj,k} and the infinite set of weights {zk} in a compact and interpretable pair of functions

on a bounded interval. The function Gj (ω) decomposes the effects of a shock by frequency.

If εj,t has very long-lasting effects on x, it induces low-frequency cycles in consumption,

and most of the mass of Gj (ω) will lie at low frequencies. If εj,t induces mainly transitory

dynamics in x, then Gj (ω) will isolate high frequencies. We refer to Gj as the impulse

transfer function (ITF) of shock j since it is the real part of the transfer function associated

with the filter
∑∞

k=0 gj,kL
k.8

8There is an alternative way to see how Gj (ω) maps into the IRF which is clearest in continuous time.
Denote the IRF at horizon k as gj (k). The ITF is then Gj (ω) =

∫∞
0
gj (k) cos (ωk) dk. The inverse
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The price of risk for shock εj thus depends on an integral over the function Gj(ω), with

weights Z(ω). Since Gj(ω) tells us the effect of εj on x at frequency ω, we interpret Z(ω)

as the price of risk for any shock to the variable x at frequency ω. Z (ω) is also akin to a

density that G is integrated over (though this density may be negative). We will thus often

discuss shifts in the mass of Z as changes that increase Z for certain ranges of frequencies

and reduce it elsewhere.

The weighting function Z (ω) does not tell us anything about the dynamics of the pricing

kernel, mt+1. Rather, Z (ω) tells us how the dynamic features of any given shock εj,t+1 map

into the innovation in the pricing kernel, ∆Et+1mt+1, which is what is relevant for calculating

risk premia and expected returns. So whereas, for example, Borovicka et al. (2011) study

generalizations of the IRF of the SDF itself, we study how the IRF of consumption growth

affects the SDF purely on date t+ 1.

It is possibly surprising that the distribution of εt is irrelevant for our analysis. The

irrelevance is due to the fact that we separate the price of risk from the quantity of risk. The

volatility of the pricing kernel, and hence the size of risk premia in the economy, depends

on both the price of risk of each shock j,
∑∞

k=0 zk gj,k, and the quantity of risk, determined

by the distribution of εj,t. Since we decompose only the price of risk, our result holds

independently of any assumptions about the distribution of the shocks. We thus have a

three-way separation between frequency-specific risk prices, Z (ω), frequency-specific power,

Gj (ω), and the quantity of risk, determined by the distribution of εj.9

Finally, note that, unlike analyses of the term structure of risk premia, including Borovicka

et al. (2011), equation (10) gives a complete separation between the dynamics of the econ-

omy and risk prices. In particular, the frequency-specific risk prices Z (ω) depend purely

transformation is gj (k) = π−1
∫ π
−π Gj (ω) cos (ωk) dω. Gj can be viewed as a decomposition of the IRF into

cosines, and Gj (ω) is the contribution to the IRF from the cosine with frequency ω.
9Note also that we are not unique in using frequency-domain analysis in the presence of potential het-

eroskedasticity. For example, the Newey—West (1987) estimator of the spectral density at frequency zero
is specifically intended to be used in the presence of heteroskedasticity. Standard frequency-domain re-
sults in the econometrics literature rely on second-order stationarity rather than homoskedasticity or serial
independence.
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on preferences, so our results about Z in different models are general characterizations of

preferences, rather than statements that depend on specific calibrations of a consumption

process.

2.1 Examples of impulse transfer functions Gj(ω)

Figure 1 plots the impulse response and impulse transfer functions for four different hypothet-

ical shocks. For the sake of concreteness, think of the priced variable xt as log consumption

growth, ∆ct. While we are ultimately interested in the effects of the shocks on log consump-

tion growth, ∆ct, since that is what enters the log SDF, for ease of interpretation we plot

the IRF in terms of the level of consumption, ct.

The first shock is a simple one-time increase in consumption. This shock has a flat

impulse transfer function, indicating it has power at all frequencies. The second shock is a

long-run-risk type shock, inducing persistently positive growth, with the level of consumption

ultimately reaching the same level as that induced by the first shock. In this case, there is

much less power at high frequencies, but the power at frequency zero is identical, since

G (0) depends only on the long-run effect of the shock on the level of consumption, Gj (0) =∑∞
k=0 gj,k.

The next two shocks have purely transitory effects. The third shock raises consumption

for just a single period, and we now see zero power at frequency zero and positive power at

high frequencies. The fourth shock is more interesting. Consumption rises initially, turns

negative in the second period, and returns to its initial level in the third period. The transfer

function is again equal to zero at ω = 0, but it now actually has negative power at low and

middle frequencies. This is a result of the fact that the impulse response of consumption is

actually negative in some periods. The sign of G reflects the direction in which the shock

drives consumption. If we had reversed the signs of the impulse responses for the first three

shocks, their transfer functions would all have been negative.
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3 Weighting functions in consumption-based models

This section applies the spectral decomposition to power utility, internal and external habit

formation, and Epstein—Zin preferences.10 Similar results can be obtained for other models,

such as affi ne term structure models and Campbell’s (1993) specification where the market

return is the priced variable.

3.1 Power utility

Under power utility, the log pricing kernel is

mt+1 = log β − α∆ct+1 (11)

where ct is log consumption, α is the coeffi cient of relative risk aversion, and − log β is the

rate of pure time preference. The associated weighting function (equation (8)) is

Zpower (ω) = α (12)

Zpower is flat and exactly equal to the coeffi cient of relative risk aversion. Zpower is constant

because the only determinant of the innovation to the SDF is the innovation to consumption

on date t + 1. A shock to consumption growth has the same effect on the pricing kernel

regardless of how long the innovation is expected to last, so future dynamics do not matter.

10While these models of preferences are often applied under the assumption of the existence of a represen-
tative agent, that assumption is not strictly necessary for our results. The pricing kernel generated by an
agent’s Euler equation will hold for any market in which she participates.
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3.2 Habit formation

Adding an internal habit to the preferences, in a simplified version of Constantinides (1990),

yields the lifetime utility function

∞∑
j=0

βj
(exp (ct+j)− b exp (ct+j−1))1−α

1− α (13)

where b is a parameter determining the importance of the habit. The pricing kernel is

exp (mt+1) = β
(exp (ct+1)− b exp (ct))

−α − Et+1b (exp (ct+2)− b exp (ct+1))−α

(exp (ct)− b exp (ct−1))−α − Etb (exp (ct+1)− b exp (ct))
−α (14)

Linearizing in terms of ∆ct+1 and ∆ct+2 around a zero-growth steady-state yields

∆Et+1mt+1 ≈ −α
(
b (1− b)−2 + 1

)
∆Et+1∆ct+1 + αb (1− b)−2 ∆Et+1∆ct+2 (15)

With internal habits the pricing kernel depends on both the innovation to current consump-

tion growth and also the change in expected consumption growth between dates t + 1 and

t+ 2. The spectral weighting function is then

Zinternal (ω) = α
(
1 + b (1− b)−2)− αb (1− b)−2 2 cos (ω) (16)

Zinternal (ω) is equal to a constant plus a negative multiple of cos (ω). As we would expect,

Zinternal (ω) = Zpower (ω) when b = 0. The left panel of figure 2 plots Zinternal for various

values of b (here and in all cases below we only plot Z between 0 and π since Z is even and

periodic). The x-axis lists the wavelength of the cycles.11

An increase in b has two effects on Zinternal: its total mass (its integral) rises, and the

mass shifts to higher frequencies. The shift in mass is consistent with the usual intuition

11Given a frequency of ω, the corresponding cycle has length 2π/ω periods (the smallest cycle we can
discern from discretely sampled data lasts two periods).
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about internal habit formation that households prefer to smooth consumption growth and

avoid high-frequency fluctuations to a greater extent than they would under power utility.

It is also useful to consider the case where b < 0, which corresponds to durable con-

sumption —people get utility both from current and also past consumption expenditures. In

that case, the effects all reverse —Zinternal is equal to a constant plus a positive multiple of

cos (ω). So with durable consumption, investors place relatively more weight on low- than

high-frequency fluctuations.

One lesson from the equation for Zinternal is that as long as b is the only parameter we can

vary, there is little flexibility in controlling preferences over different frequencies. Zinternal

is monotone, regardless of the value of b, so habit formation does not ever allow business-

cycle frequencies to carry more weight than any other frequency; that is, habit formation

cannot induce an investor to be particularly averse to business-cycle frequency fluctuations

compared to those at other frequencies.12

In contrast to internal habit formation, under external habit formation (e.g. Campbell

and Cochrane (1999)) the SDF is

exp (mt+1) = β
(exp (ct+1)− b exp (c̄t))

−α

(exp (ct)− b exp (c̄t−1))−α
(17)

where c̄ denotes some external measure of log consumption (e.g. aggregate consumption

or that of an agent’s neighbors). In this case, the innovation to the SDF depends only on

the innovation to ct+1 —news about the future is irrelevant. The weighting function with

an external habit is therefore completely flat. But since the local sensitivity of the pricing

kernel to a shock depends on the distance between consumption and the habit, the level of

the weighting function shifts over time. When consumption is close to the habit and risk

aversion is high, the level of the weighting function is also high, while when consumption is

12The log-linearization of the SDF eliminates time-variation in the price of risk. A simple extension of
the analysis is to model the SDF as being conditionally log-linear in consumption growth, with the slope
coeffi cients, and thus the shape of the weighting function, varying over time. We tackle this case in section
5.
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farther above the habit, risk aversion and the level of the weighting function are low.13

3.3 Epstein—Zin preferences

An alternative way of incorporating non-separabilities in utility over time is Epstein and Zin’s

(1991) generalized recursive preferences. In general, under recursive preferences, anything

that affects an agent’s welfare affects the pricing kernel. So not only shocks to current and

future consumption growth, but also innovations to higher moments will be priced.

Lifetime utility follows the recursion

vt =
{

(1− β) exp (ct)
1−ρ + β

(
Et
[
v1−α
t+1

])1−ρ
} 1

1−ρ
(18)

where ρ is the inverse elasticity of intertemporal substitution (EIS), and α is the coeffi cient of

relative risk aversion. Campbell (1993) and Restoy and Weil (1998) show that if the expected

excess return on aggregate wealth is constant (i.e. if the quantity of risk in the economy is

constant), the stochastic discount factor for these preferences can be log-linearized as

∆Et+1mt+1 ≈ −
(
α∆Et+1∆ct+1 + (α− ρ) ∆Et+1

∞∑
j=1

θj∆ct+1+j

)
(19)

θ is a parameter (generally close to 1) that comes from the log-linearization of the return on

the agent’s wealth portfolio (Campbell and Shiller, 1988).14 ,15

13Otrok, Ravikumar, and Whiteman (2002) show that the external habit has a strong effect on what
weight utility places on consumption cycles of different frequencies, but what we show here is that the SDF
is driven entirely by one-period innovations, so all cycles receive the same weight in pricing assets.
14θ =

(
1 +DP

)−1
, where DP is the dividend-price ratio for the wealth portfolio around which we ap-

proximate. θ generalizes the rate of pure time preference and depends somewhat on discounting due to
uncertainty about future consumption. The separation between preferences and dynamics is thus not totally
complete in this case. Hansen, Heaton, and Li (2008), however, derive an alternative approximation in which
θ = β, in which case the separation is again complete. Their result suggests (as do numerical results) that θ
is only minimally affected by consumption dynamics.
15In the case where ρ = 1, equation (19) is exact and θ = β. The approximation used to derive (19) is a

linearization of the definition of the return on a consumption claim around a constant consumption/wealth
ratio. Since the consumption-wealth ratio is constant when ρ = 1, equation (19) holds exactly in that case.
We do not assume here that consumption growth is distributed log-normally. The assumption that the
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The weighting function associated with equation (19) is

ZEZ (ω) ≡ α + (α− ρ)

∞∑
j=1

θj2 cos (ωj) (20)

Under power utility, α = ρ and ZEZ (ω) = α is flat, so all frequencies receive equal weight,

as discussed above. On the other hand, if α 6= ρ, then weights can vary across frequencies.16

The right-hand panel of figure 2 plots ZEZ for a variety of parameterizations. The

parameterizations are meant to correspond to annual data, so we take θ = 0.975 as our

benchmark, which corresponds to a 2.5 percent annual dividend yield. For α = 5 and

ρ = 0.5 (an EIS of 2), we see a large peak near frequency zero, with little weight elsewhere.

In fact, half the mass of ZEZ in this case lies on cycles with length of 210 years or more,

and 75 percent lies on cycles with length 70 years or more.

In this parameterization, it is effectively only the very longest cycles in consumption

(up to permanent shocks) that carry any substantial weight in the pricing kernel. Purely

temporary shocks to the level of consumption (which is what are induced by shocks to

monetary policy in standard models, for example) are essentially unpriced.

The line that is highly negative near ω = 0 is for α = 0.5 and ρ = 5, where households

prefer a late resolution of uncertainty. In that case, the mass of ZEZ is still isolated near zero,

but because households now prefer a late resolution of uncertainty, ZEZ is negative at that

point (since marginal utility is increasing in good news about long-run consumption growth).

The integral of ZEZ is still equal to α, though, so it turns positive at higher frequencies.17

ZEZ is much richer than what we obtain in the case of power utility and it has a number

expected return on wealth is constant in deriving (19) is what allows us to write the pricing kernel only in
terms of expected future consumption growth. The appendix examines the accuracy of the approximation
used here in simulations of Bansal and Yaron’s (2004) long-run risk model with various calibrations.
16As with external habit formation, it is natural here to also imagine variation in the weighting func-

tion Z over time. For example, movements in the coeffi cient of relative risk aversion, αt, as in Melino
and Yang (2003) or Dew-Becker (2013) would induce a time-varying weighting function, Zt (ω) = αt +
(αt − ρ)

∑∞
j=1 θ

j2 cos (ωj). In periods when αt is higher, the weighting function would then have more mass,
and the mass would be shifted relatively more towards low frequencies.
17Note, though, that the case where ρ > α is not taken as a benchmark and is not widely viewed as

empirically relevant (see, e.g., Bansal and Yaron, 2004).
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of important properties. First, as with power utility, its average value is exactly equal to the

coeffi cient of relative risk aversion,

1

π

∫ π

0

ZEZ (ω) dω = α (21)

So the total mass of ZEZ depends only on risk aversion. The effect of Epstein—Zin preferences

is therefore not to raise overall risk aversion compared to power utility, but to shift that mass

to low frequencies, changing the features of the consumption process that an investor is averse

to.

In the limit as θ → 1, i.e. where the effective rate of time preference approaches zero,

ZEZ (ω) approaches

ZEZ (ω)→ (α− ρ) δp (ω) + ρ (22)

for ω in the interval (−π, π), where δp (ω) is a periodic extension to the Dirac delta function

with 1
2π

∫ π
−π δp (ω) = 1 .18 So ZEZ can be thought of as approximately a unit point mass

weighted by (α− ρ) plus a constant ρ (figure 2 shows that this is a reasonable approximation).

In the limit, only two features of the consumption process matter: the permanent innovations

at ω = 0 (limj→∞∆Et+1ct+j), which are weighted by α − ρ, and all transitory innovations,

which have no effect on limj→∞∆Et+1ct+j, and are weighted by ρ. The fraction of the total

mass on frequency zero is α−ρ
α
. The larger is α relative to ρ, the larger is the fraction of the

mass of the weighting function that lies at frequency zero. For example, in our benchmark

calibration with α = 5 and ρ = 1/2, α−ρ
α

= 0.9, so 90 percent of the mass of the weighting

function is local to frequency zero.

So in terms of consumption, Epstein—Zin preferences differ from power utility because

they add a point mass at zero with weight (α− ρ). They are otherwise nearly identical

for cycles of all frequencies away from zero. The large amount of weight placed on very low

18Technically, we should use the limit of the Dirichlet kernel, which is a periodic extension of the delta
function. On the interval (−π, π), though, they deliver the same result.
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frequencies obviously also makes the estimation problem underlying Epstein—Zin preferences,

both for investors and economists, potentially much more diffi cult than that for power utility.

3.4 Weights on frequency ranges and the cost of business cycles

The spectral weighting functions allow us to directly quantify what fraction of risk prices are

driven by any set of frequencies, such as business cycle frequencies or lower frequencies. As

an example, while it is known from simple calibrations that under Epstein—Zin preferences

fluctuations at business cycle frequencies are relatively unimportant for asset prices (Bansal,

Kiku, and Yaron (2010)), we are able to precisely quantify that statement in a more general

way, for any possible consumption process.

Given any pricing kernel that satisfies Assumption 1, we can easily compute the total

weight that investors give to cycles of a certain length by integrating the associated weighting

function Z(ω). Specifically, the fraction of the mass in the range of frequencies between ω1

and ω2 is ∫ ω2
ω1
Z (ω) dω∫ π

0
Z (ω) dω

(23)

Table 1 reports the fraction of the mass of the weighting function ZEZ for Epstein—

Zin preferences and Zinternal for internal habits in various frequency ranges, under various

calibrations of the models.19 The left-hand columns list parameters for the calibrations. The

remaining columns then report results in different frequency ranges. The last column of the

table reports the median cycle length for each calibration —the cycle such that exactly half

the mass is on either side.

The top panel reports four sets of calibrations of Epstein—Zin preferences. The first three

sets consider various combinations of values for α, ρ and θ that all satisfy α > ρ, which

implies a preference for an early resolution of uncertainty that is assumed in the majority of

19For Epstein—Zin, the weight in any frequency range can be computed in closed form as

(πα)
−1 (

QEZ(ω2)−QEZ(ω1)
)
where QEZ (ω) ≡ ρω − 2(α − ρ) tan−1

[
(θ+1) tan(ω2 )

θ−1

]
. All the results are

obtained from quarterly calibrations; the cycle length and parameters are reported in years for convenience.
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the literature (most notably Bansal and Yaron (2004)). The last set of rows has α < ρ to

help understand the case when investors prefer a late resolution of uncertainty.

Three notable results emerge from table 1. First, the median cycle is greater than 100

years long in all calibrations for which α > ρ (the only exception being the low-risk-aversion

case of α = 2.5 and ρ = 1, where the median cycle is still 68 years). These results show

that when we say that investors with Epstein—Zin preferences are averse to long-run risk,

“long-run”should be thought as cycles in consumption lasting centuries.

Second, the table shows that Epstein—Zin preferences give an extremely small role to

business-cycle fluctuations. Across all calibrations with α > ρ we examine, business-cycle

frequencies carry at most 12 percent of the weight of the pricing kernel. Table 1 thus provides

a clear and robust result: under Epstein—Zin preferences, business cycles are quantitatively

irrelevant, while cycles lasting centuries are priced most strongly.

Third, results change dramatically when α ≤ ρ. When α = ρ, Epstein—Zin collapses to

standard power utility, whose median cycle length is 1 year (for quarterly data), and that

places 94 percent of the weight on fluctuations of 8 years or shorter. When α is strictly less

than ρ, the pricing kernel places negative weight on low frequencies because low-frequency

increases in consumption raise marginal utility, so there is relatively more weight on higher

frequencies (which is also clear in figure 2).

The bottom panel of table 1 reports the calibration results for internal habits. The only

parameter that affects the relative weight across frequency ranges is the habit parameter

b. Across all calibrations, internal habit investors place essentially all weight on very high

frequencies with cycles shorter than 1.5 years.

The quantitative results we obtain here are independent of the particular consumption

process chosen: they are obtained solely from the utility function. So we are able to extend

standard results from macroeconomics about the cost of business cycle frequencies in a more

general way.

Table 1 is one of the central results of the paper because it quantifies how various specifi-
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cations of utility functions place weight on cycles of different frequencies. While some of the

results were perhaps understood qualitatively as part of a folk wisdom, this paper pins down

exactly what frequency fluctuations investors are averse to. In the previous literature, for

example, Bansal, Kiku, and Yaron (2010) also show that a business-cycle type shock to the

economy carries a small risk price, but the analysis here quantifies the importance of busi-

ness cycle frequencies and derives the result in a much more general setting, not requiring a

specific calibration of consumption dynamics.

3.5 Implications of the theoretical result

Our theoretical results on the weight that Epstein—Zin preferences place on cycles of hun-

dreds of years suggest two limitations of models based on this utility specification. First,

they endow investors with seemingly implausible amounts of information (an argument re-

lated to that in Chen, Dou, and Kogan (2013)). Second, even if investors do have such

information, for an econometrician to test Epstein—Zin preferences may require either very

strong assumptions about the consumption process or centuries of data. Both of those argu-

ments can be made formally, based on the asymptotic distribution of the sample spectrum

of consumption growth. In particular, we show that obtaining direct information on the

behavior of consumption growth at the frequencies that carry the majority of the weight

under Epstein—Zin preferences requires 210 or more years of data.

As an example, suppose consumption growth is driven by a linear univariate Gaussian

process (but note that everything here easily extends to a multivariate setting). It is well

known that the frequency-domain features of a particular process can be estimated by taking

the discrete Fourier transform of an observed sample, which is known as the periodogram.

In a sample of length T , the periodogram is defined at a set of equally spaced frequencies,

ωk = 2πk/T for k ∈ {1, 2, ..., T}. The periodogram ordinates are asymptotically independent

and provide information about the dynamics of consumption growth at frequency ωk.20

20Specifically, the periodogram is equal to the true spectrum multiplied by an Exp (1) random variable.
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In a given sample, the lowest frequency that we have information about is 2π/T and the

associated wavelength is exactly T periods. That is, in a sample of length T , the longest

fluctuation that we directly observe lasts T periods. For a post-war quarterly sample, T ≈ 70

years. At our benchmark calibration in that case, more than 75 percent of the mass of the

Epstein—Zin weighting function lies below ω1 = 2π/70. That is, 75 percent of the weight

that determines risk premia in the model lies on frequencies about which we have no direct

information. To have even a single observation at the median frequency would require having

a sample 210 years long.

So in a non-parametric sense we have almost no direct evidence about the frequencies

that we must estimate in order to know what Epstein—Zin preferences imply for risk premia.

Based purely on the periodogram, models involving Epstein—Zin preferences are essentially

untestable — the frequencies that determine risk premia under the model are not directly

observable, so it is impossible to test the prediction that power at low frequencies determines

the risk premium without adding external information to the estimation method.21

But the diffi culty in estimation is obviously not just a problem for econometricians; it

also affects investors. It seems rather implausible to assume that investors are sure of the

dynamics of consumption growth at frequencies that cannot be observed without centuries

of data. A number of recent papers build on precisely that point, including Chen, Dou, and

Kogan (2013), Bidder and Dew-Becker (2015), and Collin-Dufresne, Johannes, and Lochstoer

(2015).

So the fact that most of the mass of the weighting function under Epstein—Zin preferences

is located on cycles of 210 years or more is problematic for two reasons —it makes the central

asset pricing predictions of the model extremely diffi cult to test, and it relies on investors

This type of analysis is the basis of both the Whittle (1962) likelihood and also of non-parametric time series
estimation (see Brillinger (1981) and Priestley (1981)).
21One option, for example, is to impose parametric restrictions on the consumption process, which then

allows one to estimate low-frequency dynamics based on higher-frequency data. But at that point, one faces
the joint hypothesis problem that the test of the model is only valid if the restrictions on consumption growth
are true.
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having firm beliefs about features of the consumption process that they have never directly

observed.

3.6 Model contamination

One of the advantages of looking at the frequency domain decomposition is that it gives a

compact and quantitative representation of the entire dynamic process driving the economy.

To give a closer comparison to the time-domain methods used in the previous literature to

study the role of dynamics in models (e.g. Bansal, Kiku, and Yaron (2010, 2012), or Beeler

and Campbell (2012)) we now consider a small perturbation of Bansal and Yaron’s (2004)

long-run risk model. We show that typical time-domain analysis of the dynamics is not

robust to small changes in model specification; frequency-domain analysis is. The results in

this section thus give a concrete example of the advantage of the frequency domain analysis

that we have thus far provided, beyond the novel quantitative metrics presented above.

In the benchmark long-run risk model, consumption growth follows

∆ct = xt−1 + ε∆c,t (24)

xt = ρxt−1 + εx,t =
∞∑
j=0

ρjεx,t−j (25)

As a closely related alternative, we examine the contaminated model

∆ccont = xcont−1 + ε∆c,t (26)

xcont =

(
1.8

∞∑
j=0

ρj − 0.24
∞∑
j=0

θj

)
εx,t−j (27)

Instead of following an AR(1) like xt, xcont is the difference between two AR(1) processes (with

perfectly correlated innovations). While the difference between ∆ct and ∆ccont is visible in

these equations, we will see that autocorrelations and IRFs, which are typically examined

in the literature (especially for production-based models where the full dynamic process for
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consumption growth is not known analytically, e.g. Kaltenbrunner and Lochstoer (2010)),

suggest that in fact their dynamics are nearly identical.

Using a quarterly calibration following Bansal and Yaron (2004), we set ρ = 0.938,

std (ε∆c,t) = 0.0135, and std (εx,t) = 0.000584. θ is set to take the same value as in the

calibration of Epstein—Zin preferences above, 0.9751/4.22 The models thus only differ in the

dynamics of the persistent component of consumption growth.

The top-left panel of figure 3 plots the first 20 quarterly autocorrelations of consumption

growth in the original and contaminated long-run risk model. The choice to examine corre-

lations out to 5 years follows the empirical evaluations of the long-run risk model in Bansal,

Kiku, and Yaron (2012) and Beeler and Campbell (2012). The autocorrelations of ∆ccon are

in fact higher than in the original long-run risk model, suggesting that the contaminated

model should be more risky. The unconditional standard deviation of consumption growth

is also slightly higher, at 1.37 instead of 1.36 percent.

The top-right panel of figure 3 shows that the first ten years of the impulse-response

function of consumption to εx,t is higher at every horizon in the contaminated model. At ten

years, the IRF for the contaminated model is 23 percent higher than that for the original.

So by standard measures, the autocorrelation and the IRF, the contaminated model seems

far more risky than the original calibration.

But appearances deceive us: rather than being more risky than the original, εx is in fact

far less risky in the contaminated model —its risk price is smaller by exactly half. Looking

at the impulse transfer functions would have made this immediately clear. The bottom

panels of figure 3 plot the impulse transfer functions G for εx in the two models along with

the weighting function Z under the benchmark Epstein—Zin calibration from above (the

right-hand panel zooms in on cycles longer than 5 years). While the ITF is higher in the

contaminated model at most frequencies, it rapidly falls at the lowest frequencies, exactly

22The power 1/4 is to account for the change from an annual to a quarterly calibration. The choice to
align the persistence of the perturbation with the effective discount factor is not a coincidence. See Bidder
and Dew-Becker (2014) for an explanation of why this is the most powerful perturbation.
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where the frequency-specific risk prices are highest. When we look at the ITFs, the much

smaller risk price for the contaminated shock is not at all surprising.

The results in this section help emphasize our motivation for studying the frequency

domain. Standard time-domain tools, IRFs and autocorrelations, in this case clearly do not

adequately measure risk, while the impulse transfer function, particularly near frequency

zero, does.

4 Multiple priced variables

Our frequency decomposition also holds when there is more than one variable that drives

utility. A benchmark example is in Bansal and Yaron’s (2004) long-run risk model where

volatility varies over time and is a priced factor. But there are also many studies in which

other higher-order moments of the consumption process vary, e.g. Drechsler and Yaron

(2011); Gourio (2012); Wachter (2013); and Constantinides and Ghosh (2013). We show

that our analysis easily extends to such cases, with the only difference being that there will

be a frequency-domain weighting function for each priced variable (all proofs are reported

in the Appendix).

4.1 General pricing result

Assumption 1a: Structure of the SDF

Instead of there being a single priced variable xt, suppose there is an m × 1 vector of

priced variables, xt, with

mt+1 = f (It)−∆Et+1

∞∑
k=0

zkxt+1+k (28)

where zk is a 1 ×m vector of weights and f (It) is an unspecified scalar valued function as

before.
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Assumption 2a: Dynamics of the economy

We assume that xt is driven by a vector moving average process as before,

xt = Jx̄t (29)

x̄t = Γ (L) εt (30)

for some matrix J of dimension m× n, and where Γ is an n× n matrix-valued power series

in the lag operator with coeffi cients Γk.

We have the following extension of Result 1,

Result 2. Under Assumptions 1a and 2a, we can write the innovations to the SDF as,

∆Et+1mt+1 = −
∑
j

(
1

2π

∫ π

−π
Z(ω)G (ω) dω

)
εj,t+1 (31)

where Z (ω) is a 1 × m vector-valued weighting function and G (ω) is an m × n transfer

function that measures the dynamic effects of εt on x in the frequency domain,

Z (ω) ≡ Z0 + 2
∞∑
k=1

Zk cos (ωk) (32)

G(ω) ≡
∞∑
k=0

cos (ωk) gk (33)

and gk is the matrix of impulse response functions,

gk ≡ JΓk (34)

In this case, then, we have multiple variables whose impulse responses we track in G,

and each of the priced variables has its own weighting function, represented as one of the

elements of Z(ω).
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4.2 Epstein—Zin with time-varying higher moments

In our main analysis of Epstein—Zin preferences, we examined the case where the expected

excess return on a consumption claim is constant. That case requires that the conditional

moments of consumption growth above order 1 be constant. We now show how to extend

the result to a case where any of the higher moments of consumption may vary.

We assume that consumption growth follows a vector moving average process as before,

∆ct =
∑
j

gj (L) εj,t (35)

We now assume, though, that rather than the εj,t having fixed distributions over time, their

distributions are driven by a factor x̃t, which, without loss of generality, we restrict to have

zero mean (here we assume x̃t is a scalar for simplicity, but the analysis trivially extends to

the case where x̃t is a vector). We assume that x̃t affects the distribution of εj,t linearly in

its cumulant-generating function,

logEt exp (τεj,t+1) = fj,0 (τ) + fj,1 (τ) x̃t (36)

A special case of the above is where εj,t+1 is conditionally normally distributed, in which

case fj,0 (τ) + fj,1 (τ) x̃t = 1
2
vart (εj,t+1), so the conditional variance of εj,t+1 would be linear

in x̃t (as in Bansal and Yaron (2004)).

x̃t is also assumed to follow a VMA process that depends on the same innovations that

drive consumption growth (though note that x̃ and ∆c may be made independent with

particular choices of the lag polynomials).

x̃t =
∑
k

g̃k (L) εk,t (37)

(as is common in the literature, for example in Bansal et al. (2014) or Campbell et al.

26



(2015), we ignore here the fact that this specification implies that volatilities can become

negative).

The appendix then shows that the price of risk for εj,t is

∫
Z∆c (ω)Gj (ω) dω +

∫
Zx̃ (ω) G̃j (ω) dω (38)

where

Gj (ω) ≡
∞∑
j=0

gj cos (ωj) (39)

G̃j (ω) ≡
∞∑
j=0

g̃j cos (ωj) (40)

and

Z∆c (ω) ≡ ρ+ (α− ρ)
∞∑
j=1

θj2 cos (ωj) (41)

Zx̃ (ω) ≡ k1
ρ− α
1− ρ

(
1 +

∞∑
j=1

θj2 cos (ωj)

)
(42)

where k1 is an equilibrium coeffi cient that determines the effect of a unit increase in x̃t on

the expected excess return on wealth.

Each shock is now associated with a pair of transfer functions that measure the effects of

the shock on consumption and on the distribution of the innovations, and those transfer func-

tions are interacted with a pair of spectral weighting functions, Z∆c and Zx̃. The weighting

functions have a number of notable features. First, Z∆c is identical to the weighting function

obtained for consumption in the case where the innovations were identically distributed over

time. That is, adding variation in higher moments (linearly dependent on a variable x̃) does

not affect the pricing of innovations to expected consumption growth.

Second, note that the weighting functions for ∆c and x̃ are almost identical up to a
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scaling factor. When ρ = 0, they are in fact proportional to each other, and for α � ρ,

they are nearly proportional. So Epstein—Zin preferences imply nearly identical treatment

of variation in higher moments of consumption growth to variation in the first moment.

Third, the shape of Zx̃ does not depend on how x̃ affects the distribution of consumption

growth. Regardless of how x̃ affects the cumulant-generating function of consumption growth

(36), its risk price depends purely on its effects on the expected excess return on wealth,

through the coeffi cient k1.

Finally, note that if G̃j (ω) = 0 for some shock εj —i.e., if it does not affect x̃ —then the

shock is priced in this setting exactly the same way that it is in a homoskedastic model.

In the empirical analysis below, in addition to trying to estimate weighting functions for

consumption growth, we also examine the pricing of shocks to expected future volatility. We

leave the empirical analysis of variation in other higher moments (such as disaster risk) to

future work.

5 Estimation

We now proceed to estimate the weighting function Z in US equity markets. In addition to

providing novel evidence on what model of preferences best describes the pricing of risks,

the estimation also demonstrates how diffi cult the estimation problem is that investors face.

We begin by describing the parametric specifications of the weighting function that we

estimate. We then carry out the full estimation, focusing in particular on the ability of

our frequency domain analysis to help increase the precision of estimates of consumption

dynamics.
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5.1 Parameterized weighting functions

5.1.1 The utility specification

The analysis of the utility functions in Section 3 suggests modeling Z as:

ZU (ω; q) = q1

∞∑
j=1

θj cos (ωj) + q2 + q3 cos (ω) (43)

where q1, q2, and q3 are unknown coeffi cients and q ≡ [q1, q2, q3]. We call (43) the utility spec-

ification because it exactly nests the weighting functions derived from utility-based models.

If q3 = 0, (43) precisely matches the weighting function for Epstein—Zin preferences in (20).

If q1 = 0, the long-run component that is crucial in the Epstein—Zin case is shut off, and we

obtain the specific weighting function for internal habit formation in (16). Finally, if both

q1 = 0 and q3 = 0, then we have the weighting function for power utility.

So tests of hypotheses that those coeffi cients are equal to zero represent tests of the

different specifications of the utility functions. Specifically, if we were to find values for

q1 and q2 that are significantly different from zero while q3 is not, that would imply that

the data is consistent with Epstein—Zin preferences. On the other hand, if q2 and q3 are

significant but q1 is not, the data would support habit formation.

Moreover, the parameters map directly to preferences. For example, if investors have

Epstein—Zin preferences, then q1 = 2 (α− ρ), q2 = α, and q3 = 0. Estimation of ZU is

identical to estimating the pricing kernel as though the three utility functions hold. That

is, the fact that we do this estimation in the frequency domain has no implications for the

results.

For the long-run component, we choose θ = 0.9751/4 for quarterly data, corresponding to

a 2.5 percent annual consumption/wealth ratio as above.23

Because the utility specification is composed of the weighting functions we derived under

23In principle, we could estimate θ. However, we find that it is poorly identified in the data, so we proceed
to calibrate it to a value widely used in the literature.
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various preference specifications, the constituent functions are already plotted in figure 2.

In particular, the lines in the right-hand panel represent the first function,
∑∞

j=1 θ
j cos (ωj),

shifted upward by a constant. This function clearly isolates very low frequencies, and the

extent to which the lowest frequencies are isolated depends on the parameter θ. Estimates

of the utility specification allow us to empirically measure the ability of the three different

utility functions to explain the cross-section of risk premia.

5.1.2 The bandpass specification

As an alternative to the strict utility specification, we also model Z more flexibly. We break

the interval [0, π] into three economically motivated intervals, corresponding to business-

cycle length fluctuations, with wavelength between 6 and 32 quarters (as is standard in the

macro literature, e.g. Christiano and Fitzgerald (2003)), and frequencies above and below

that window. Z then takes the form of a step function on those three frequency windows,

and the levels of the steps are the free parameters to estimate.

We refer to the set of three step functions as the bandpass specification, ZBP (ω; q), since

it is composed of the sum of three bandpass filters,

ZBP (ω; q) = q1Z
(0,2π/32) (ω) + q2Z

(2π/32,2π/6) (ω) + q3Z
(2π/6,π) (ω) (44)

where Z(a,b) (ω) ≡

 1 if a < |ω| ≤ b

0 otherwise
(45)

If investors are averse to long-run risks, we would expect risk prices to be highest below

business cycle frequencies, while habit formation type preferences imply that the risk prices

should be highest at higher frequencies. That is, Epstein—Zin preferences imply a high value

for q1 compared to q2 and q3, while habit formation implies a high value for q3 compared to q1

and q2. Note that what is considered “long-run risk”here is not the literal interpretation of

Epstein—Zin preferences (centuries); rather, the long-run is anything longer than the business
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cycle.

The bandpass specification demonstrates one of the key features of our approach: we

are able to estimate the sources of risk premia in a way that is clearly linked to underlying

economic risks —fluctuations in consumption at meaningfully chosen frequencies —but we

do not necessarily need to use the highly constrained specifications required by structural

models. That said, if the number of steps in the bandpass specification were allowed to

increase, it could eventually represent arbitrary preferences accurately. We also expect that

the bandpass specification will increase estimation power as it does not isolate its mass nearly

as close to frequency zero as the utility specification.

One potential drawback of the bandpass specification is that since it is somewhat reduced-

form, it is diffi cult to see the precise link to microeconomic behavior. The appendix therefore

describes a setting in which the bandpass specification would arise endogenously if investors

estimate consumption dynamics using a restricted model (e.g. due to information processing

constraints).

5.2 Estimates

We now estimate the weighting function Z in the US equity market. The overall estimation

method has three basic steps:

1. Estimate a model of consumption dynamics with news at various horizons, based on

a factor-augmented vector autoregression (FAVAR) model.

2. Estimate transfer functions and a rotation from the time to the frequency domain.

3. Estimate risk prices on the innovations to consumption growth in the frequency

domain.
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5.2.1 Step 1: Estimation of the dynamics

We estimate the dynamics of consumption by specifying and estimating a factor-augmented

vector autoregression (FAVAR).24 The FAVAR specification combines the advantages of the

VAR methodology with the dimension reduction properties of factor models. Vector autore-

gressions (VARs) have the advantage that they are easy to estimate (in that they require

no numerical optimization), they have been widely used in the previous literature,25 and be-

cause when the number of lags in the VAR increases, the VAR structure can asymptotically

capture arbitrarily rich dynamics (Lewis and Reinsel (1985); Mitchell and Brockwell (1997);

Schorfheide (2005)).

Our estimation of the dynamics follows Jurado, Ludvigson and Ng (2015), not only

because we apply the same methodology to set up and estimate the FAVAR system, but also

because we use the same 131 macroeconomic series.

The FAVAR we estimate has three variables: log real consumption growth (observable

factor), and two latent factors, F1t and F2t. The VAR is therefore specified as:

x̄t = Φ̄ (L) x̄t−1 + εt (46)

where x̄t contains ∆ct, F1t, F2t.

Note that if the lag polynomial Φ̄ (L) has order k, then we can stack k consecutive

observations of x̄t so that xt ≡
[
x̄′t, x̄

′
t−1, ..., x̄

′
t−k+1

]′
follows a VAR(1)

xt = Φxt−1 + εt (47)

and ∆ct = b1xt.26 F1t and F2t are estimated from the 131 macroeconomic series of Jurado,

24See Bernanke, Boivin and Eliasz (2005), Ludvigson and Ng (2007), and Jurado, Ludvigson and Ng
(2015).
25E.g. Vuolteenaho (2002); Campbell and Vuolteenaho (2004); Bansal, Dittmar, and Lundblad (2005);

Larrain and Yogo (2008); Lustig and van Nieuwerburgh (2008); Campbell, Polk, and Vuolteenaho (2010);
and Campbell et al. (2015).
26Recall that bj represents a conformable selection vector equal to 1 in element j and 0 elsewhere.
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Ludvigson and Ng (2015) using principal component analysis. The VAR is then estimated

through OLS, using the estimated factors F̂1t and F̂2t yielding estimates of Φ and the innova-

tions εt. For readability, the two principal components are scaled to have the same variance

as consumption growth.

We use quarterly data over the longest sample for which all the variables are available,

1961—2011.27 We select three lags for the VAR, as recommended by cross-validation.28 Table

A1 in the appendix reports the estimated VAR matrix Φ.

5.2.2 Step 2: Estimate transfer functions and a rotation

Given the estimated FAVAR, the transfer function for shock j is

Gj (ω) =
∞∑
k=0

cos (ωk) b1Φ
kb′j (48)

The two finite-order specifications for Z, the utility and the bandpass specification, both

take the form,

Z (ω; q) = q1Z1 (ω) + q2Z2 (ω) + q3Z3 (ω) (49)

= q [Z1 (ω) , Z2 (ω) , Z3 (ω)]′ (50)

(for different sets of functions Z1, Z2, Z3). Denoting the risk price for shock j as pj, we have

27Our primary sample uses quarterly data because that is the highest frequency at which consumption data
is available for the full post-war sample. Parker and Julliard (2005) and Malloy, Moskowitz, and Vissing-
Jorgenson (2009) find that using lower frequency or time-aggregated data can producer stronger evidence
in favor of the consumption CAPM. Note that in our setting, the shortest wavelength cycle that we can
price is two periods long. When the unit of observation is quarterly, we can potentially price fluctuations
as short as two quarters. The effect of aggregating consumption to a lower (e.g. annual) frequency is thus
to eliminate our ability to price higher frequency fluctuations. We examine results using annual data below
and find results consistent with the main quarterly analysis.
28We have explored other criteria for lag selection. The cross-validation criterion is the most natural in this

context, as it is based on the forecasting ability of the model, which plays a central role in our analysis (since
the VAR is used to construct news about future consumption at different horizon). Among the other criteria
we analyzed, the AIC and the FPE criteria favored using three lags, consistent with the cross-validation
approach. BIC suggests two lags, while HQIC favors two lags only slightly against three lags. Appendix G
reports robustness tests using two lags in the VAR.
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(from Result 1)

pj =
1

π
q

∫ π

0

[Z1 (ω) , Z2 (ω) , Z3 (ω)]′Gj (ω) dω (51)

It is straightforward then to show that the vector of risk prices is,

p ≡ [p1, p2, p3] (52)

= qW (53)

where the (i, j)th element of W is

Wi,j =
1

π

∫ π

0

Zi(ω)Gj(ω)dω (54)

This result tells us that once we estimate the rotation matrix W from the consumption

dynamics, we can express the coeffi cients of the Z function, q, as a function of the risk

prices of the VAR innovations, p, as:29

q = pW−1 (55)

The matrix W summarizes the interactions of the transfer functions with the compo-

nents of the weighting function, Zi (which, given a choice of a set of functions Z1, Z2, Z3,

are fully known and need not be estimated). W allows us to rotate between the risk prices

on the reduced-form shocks, p, and the frequency-domain risk prices, q. The entire point of

estimating the VAR for consumption growth is to develop estimates of the consumption dy-

namics, and all the relevant information for asset prices originating from the model dynamics

is contained in W.

It is important to note here that there is no need to make any assumptions to identify

“structural”shocks in the VAR. Nowhere in the derivations above did we make any assump-

29For this last step, W needs to be invertible.
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tions about the shocks εt being somehow structural; for example, their covariance matrix is

entirely unrestricted. Our results are therefore analytically identical regardless of how the

estimated shocks are rotated. That is a major advantage of our approach —the frequency-

domain risk prices may be estimated without having to make assumptions to identify a

structural VAR. The appendix provides a full derivation of that result.

Estimates of the transfer functions The VAR has three innovations: one to consump-

tion growth and two to the two factors, so we have three impulse transfer functions. Figure

4 plots the estimated impulse transfer functions for each shock. The shaded regions in each

figure are pointwise 95-percent confidence intervals. The vertical bar in each plot corresponds

to cycles of 8 years —that determines the barrier between business-cycle and below-business-

cycle fluctuations. Note that there are meaningful qualitative and quantitative differences

across the functions in how power is distributed, which will help identify the underlying risk

prices of different frequencies. If the transfer functions were all highly similar, then we would

not expect to be able to distinguish risk prices across frequencies very well.

Rotation matrix The ultimate reason that we estimate the VAR for consumption growth

is to generate a rotation matrix W. Table 2 reports the rotation matrix W for the utility

and bandpass specifications.

Since the frequency-domain risk prices, q, are rotated from the time-domain prices, p,

using W, estimation error in W is a key factor in determining the standard errors of q.

Heuristically, we can think of the moment conditions for the estimate of q as being the

vector (p− qW) (we discuss the precise moment conditions used for q below). Using the

formula for the optimal-GMM standard errors for q (and ignoring uncertainty in p for the
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moment), we have30

cov (q) ≈W′−1qcov (W) q′W−1 (56)

This equation approximates the uncertainty in estimates of q coming from uncertainty in

W. The covariance matrix of the estimates q depends crucially on the covariance matrix of

the estimates of W. Doubling the variance of W doubles the variance of the estimates of

q.31

5.2.3 Step 3: Estimation of frequency-domain risk prices q

Moment conditions We now proceed to estimate the full model, using the sequential

GMM estimation described in Hansen (2008). We account for heteroskedasticity and serial

correlation in the errors using Newey-West standard errors with 12 quarterly lags.

Under the assumption that returns are log-normally distributed, the risk prices can be

estimated from the asset pricing condition (see the appendix for the derivation)

E[exp (rit+1)− exp
(
rft+1

)
] = −cov(mt+1, rit+1) (57)

= E
[
qWεt+1rit+1

]
(58)

where rit are log test asset returns, rt is the corresponding vector, and r
f
t is the log risk-free

30Specifically, given a moment condition m (q) ≡ p− qW, the covariance matrix of the estimates of q is(
Γ∆−1Γ′

)−1
= Γ′−1∆Γ−1, where Γ = dm(q)

dq = −W and ∆ = cov (m (q)) = qcov (W) q′. This all assumes
that the model is correctly specified and is simply meant for illustrative purposes.
31In the utility specification, the constant term appears without error because we have normalized the

component functions by the variance of consumption growth. Since the constant is simply a one-standard-
deviation shock to consumption growth, there is no uncertainty left in it.
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rate.32 Our full set of moment conditions identifying the parameters of the model is

Ht+1 (Φ,x) =

(xt+1 −Φxt)⊗ xt︸ ︷︷ ︸
VAR moments

, exp rt+1 − exp rft+1 −
Mapping into frequency domain(︷︸︸︷

qW (xt+1 −Φxt)

)
rt+1︸ ︷︷ ︸

Asset pricing moments


(59)

The first set of moment conditions identifies the dynamics and therefore W. The second set

of moment conditions are the cross-sectional asset pricing moments that identify q.

While we could in principle minimize the GMM objective function for all the parameters

simultaneously, that method has the drawbacks that the optimization is diffi cult to perform

(due to the large number of parameters) and that it allows errors in the asset pricing model

to affect the VAR estimates. We therefore construct estimates of Φ and q by minimizing the

two sets of moment conditions separately. That is, Φ is simply estimated through OLS and

then q is estimated taking Φ as given, using standard two-step GMM.33 This is precisely the

sequential GMM procedure described by Hansen (2008), and we calculate standard errors

following that paper. The appendix describes the details.

Estimates of Z(ω) Table 3 reports the estimated risk prices. We repeat the estima-

tion using different test assets, sequentially adding groups of test assets (all but the last

one obtained from Ken French’s website). The first column uses the set of 25 size- and

book/market-sorted portfolios; the second column adds a set of 49 industry portfolios (we

drop six industry portfolios that have missing data in the period considered). The third

column adds a set of 25 portfolios sorted by investment and operating profitability. The last

column reports our most comprehensive test, which also adds 9 risk-sorted portfolios (double

sorted based on the exposure to the estimated low- and business-cycle frequency shocks, as

32The log-normality assumption for the empirics is standard in the literature. See, e.g., Campbell and
Vuolteenaho, 2004; Campbell et al., 2015; Bansal et al., 2014. While not necessary for our theoretical result,
assuming log-normality allows us to avoid making assumptions about the mean of the conditional log SDF
when estimating the model and focus purely on its innovations; in addition, it yields a linear factor model,
which is easy to estimate and interpret.
33The same sequential method is used in Campbell and Vuolteenaho (2004) and Campbell et al. (2015).
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described in the appendix). For each portfolio set we estimate both the bandpass and the

utility specification.

For the utility specification in the top set of rows, no coeffi cients are significant at the

five-percent level and only two out of four are significant at the 10 percent level. That is,

none of the three structural models nested in our specification is robustly significant. This

result would normally be taken as showing that consumption is not meaningfully priced in

the cross-section of returns.

That conclusion would be premature, though. The second set of rows shows that when

we use our three-window bandpass specification, low-frequency shocks are in fact priced

significantly for all sets of test assets, at the 10 percent level in two specifications and five

percent in the other two. Business-cycle and higher-frequency shocks, on the other hand,

are not priced.34 Tests for equality of the coeffi cients (p-values of the chi2 test are reported

in the table) strongly reject the null of equality in all but the last case.35

The third set of rows reports the results of the bandpass estimation when we constrain

q2 = q3, or, on other words, we use only two bandpass windows: cycles longer than 8 years

(low frequencies) and shorter than 8 years. The coeffi cients on the low frequency shocks

change only minimally and are significant in all cases; cycles shorter than 8 years in fact

have average risk prices with the wrong sign. A t-test for the difference is statistically

significant for all sets of test assets.

We conclude that, when we use the bandpass specification, we find clear evidence that

low-frequency shocks to consumption growth are actually priced, and the price of risk is

significantly different than for higher-frequency fluctuations.

Figure 5 plots the estimated spectral weighting functions obtained using the 25 Fama—

French portfolios for the utility specification (top row) and the bandpass specification (bot-

34The appendix reports results using bootstrapped t-statistics instead of the asymptotic approximation
and we obtain similar results.
35In addition, the hypothesis that the weighting function is monotonically downward sloping cannot be

rejected statistically, consistent with the view that investors are relatively more averse to low-frequency
fluctuations.
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tom row).36 The left panels plot all frequencies, while the right panels zoom in on the

cycles longer than 5 years. The lighter shaded area corresponds to the 95-percent confidence

intervals, and the darker shaded area reports 1 standard deviation intervals.

Consistent with the results in table 3, the figure shows significant weight at low frequen-

cies for both the bandpass and the utility specification. The price of low-frequency shocks

is estimated quite precisely using the bandpass specification (and is significantly different

from zero at the 95 percent level), while the standard errors of the utility specification esti-

mates diverge quickly as we look at frequencies closer to zero, confirming the large amount

of statistical uncertainty exactly in the frequency range most important for Epstein—Zin

preferences.

Table 3 and figure 5 together show that when we use the bandpass specification to es-

timate average risk prices in the three frequency ranges, we find that low-frequency shocks

are significantly priced, consistent with the economic intuition underlying Epstein—Zin pref-

erences. Using the frequency-domain decomposition leads us to very different conclusions

about the underlying theories than standard time-domain techniques would have. The re-

sults that employ the utility specification show little support for Epstein—Zin preferences.

Looking at the problem using the bandpass filter and targeting the economically relevant

set of frequencies instead yields strong and robust support for the idea that low-frequency

shocks to the economy are priced in equity markets.

To further assess the role of estimation uncertainty, we also report in figure A1 confidence

intervals for the risk prices that ignore the estimation uncertainty of the VAR, and therefore

treat the VAR and the associated Gj(ω) functions as certain. These (tighter) confidence

intervals are captured by the darker shaded area. For the utility specification, the difference

is dramatic: ignoring the fact that the very lowest frequencies are hard to measure, one

would conclude that Epstein—Zin preferences are strongly supported statistically, since the

36The appendix reports the factor loadings of the size and book/market sorted portfolios on low-frequency
and business-cycle-frequency fluctuations.
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dark confidence intervals are tight even around frequency zero. The light shaded area, which

reports the confidence intervals including the estimation uncertainty at those frequencies,

reveals that the power of a test of the Epstein—Zin model is much smaller, since all the

weight of the model is on frequencies that are extremely diffi cult to measure.

A comparison of the light and shaded confidence intervals for the bandpass specification

reveals that treating long-run shocks as all shocks with cycles longer than the business cycle

makes the estimation results much more robust. Since the first section of ZBP (ω) covers a

range of frequencies that not only includes those isolated by Epstein—Zin preferences (cycles

lasting 210 years or more) but also shorter frequencies which are much better identified in

the data (as low as 8 years), adding the estimation uncertainty from the VAR increases the

width of the confidence bands in a less dramatic way.

5.3 Alternative specifications of the model: stochastic volatility

and external habit formation

In our baseline specification (reported in table 3 and figure 5) we have estimated the pricing

of different fluctuations in consumption by estimating two specifications of the Z function.

In this section we report the results of two additional model specifications. The first one

estimates the price of risk for fluctuations in volatility in addition to consumption growth.

The second one estimates the prices of risk allowing these prices to vary with the surplus

consumption ratio (calculated as in Campbell and Cochrane (1999)): it therefore considers

a conditional version of the model, where each element that enters the function Zt(ω) is

allowed to depend on a time-t conditioning variable (the surplus consumption ratio).

In a model where both consumption growth and volatility are priced (as described in

Section 4), the stochastic discount factor will depend on two weighting functions, one for

each priced variable: Zc(ω) for consumption and Zv(ω) for volatility. In our implementation,

we use realized variance as a proxy for consumption volatility, since it can be estimated
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much more precisely than the variance of consumption growth using high-frequency data (in

addition, the two are closely related in those models).37 For each weighting function, we

employ either the utility or the bandpass basis. It is important to note that the estimation

of the weighting functions requires observing as many shocks as the parameters of the Z

functions to estimate. For example, estimating a 3-parameter utility specification for Zc and

Zv requires estimating a VAR with at least 6 variables. We do so by adding 3 extra principal

components from the Ludvigson and Ng (2007) data; we report the results in Appendix table

A3. Given the large dimension of the VAR, it is not surprising that the estimates of the risk

prices are not statistically significant.38 Overall, we do not have enough power in our data

to be able to statistically discern the pricing of volatility in addition to consumption.

Table A4 reports instead the specification in which Zt is allowed to vary with the surplus-

consumption ratio, in the spirit of Campbell and Cochrane (1999). The left side of each panel

reports the results when each element of Zt is allowed an unrestricted interaction with the

surplus consumption ratio, constructed exactly as in Campbell and Cochrane (1999) and then

normalized to have zero mean and unit variance. The “level”estimates indicate the average

price of risk for each rotated shock; the “interaction”coeffi cients are negative when the risk

prices are higher in times of low surplus consumption (as predicted by the habit model).

For both the utility and the bandpass specifications, the estimation provides evidence that

prices of risk for the low-frequency shocks are indeed higher when the surplus consumption

ratio is higher; in addition, the unconditional level of the price of risk is positive as in the

baseline estimate. This analysis reinforces our main finding that low-frequency fluctuations

are significantly priced, and adds evidence that risk prices for these fluctuations increase in

bad times (times of low consumption relative to the habit).

The appendix describes a wide range of robustness tests and extensions to the results in

37Realized variance has been often used in studies of long-run risks and intertemporal CAPM, for example
by Bansal et al. (2014) and Campbell et al. (2015).
38The table also reports a restricted specification, with only the low-frequency component of consumption

and the three components of volatility. Again, the results are not statistically significant.
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addition to those mentioned above. We show that the results are qualitatively unchanged

when we use annual rather than quarterly data, when we use alternative data to form the

factors for the FAVAR, when we use alternative methods to construct confidence intervals,

and when we use two lags in the VAR instead of three (though in that case the results are

no longer statistically significant). Overall, the results reported in table A5 confirm that

low-frequency fluctuations are significantly priced across a number of different data sources,

specifications, and estimation methods.

6 Conclusion

This paper studies risk prices in the frequency domain. The impulse response of consumption

growth to a given shock to the economy can be decomposed into components of varying

frequencies. We show that in any log-linear asset pricing model, we can analytically derive

the price of risk that investors assign to fluctuations in consumption at different frequencies.

In addition, this frequency-specific price of risk depends only on the investor’s preferences,

not on the underlying consumption dynamics in the economy.

First, we show quantitatively how important consumption fluctuations at different fre-

quencies are for investors in different models. In standard calibrations of Epstein—Zin pref-

erences investors place most weight on consumption cycles that last a century or more when

pricing assets. Conversely, very little weight is placed on fluctuations shorter than 100 years,

and there is essentially no weight on business-cycle fluctuations.

Second, we provide estimates of the spectral weighting function in US equity markets.

While the highly constrained preferences for dynamics implied by standard models (e.g.,

Epstein—Zin, habit formation, etc.) fail to explain asset prices empirically in a robust way,

we show that a generalization of preferences for dynamics in the frequency domain yields

strong support for aversion to low-frequency fluctuations by investors in the equity market.
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A Derivation of result 1

For any gj,k, we have

gj,k =
1

2π

∫ π

−π
G̃j (ω) (cos (ωk) + i sin (ωk)) dω (60)

Now since gj,k = 0 for k < 0, for any k > 0 we have

gj,k = gj,k + gj,−k =
1

2π

∫ π

−π
G̃j (ω)

 cos (ωk) + i sin (ωk)

+ cos (−ωk) + i sin (−ωk)

 dω (61)

=
1

2π

∫ π

−π
G̃j (ω) 2 cos (ωk) dω (62)

Furthermore, note that the complex part of G̃ (ω) multiplied by any cos (ωk) for integer k

integrates to zero, which is why we can just study G ≡ re
(
G̃
)
. We thus have

∞∑
k=0

zkgj,k =
1

2π

∫ π

−π
Gj (ω)

(
z0 + 2

∞∑
k=1

zk cos (ωk)

)
dω (63)

The result is related to Parseval’s theorem, but it has the advantage of yielding a decom-

position that is entirely real-valued, which is achieved by exploiting the fact that gj,k = 0 for

k < 0.

B Quality of the linear approximation for Epstein—Zin

preferences

This section examines the quality of the linear approximation used in analyzing Epstein—

Zin preferences. The linear approximation is compared to the solution from a high-order

projection of Bansal and Yaron’s (2004) long-run risk model which is useful for having

highly volatile and persistent state variables.
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B.1 Model

The model from Bansal and Yaron (2004) is

∆ct = xt−1 + σt−1εc,t (64)

xt = φxxt−1 + ϕeσt−1εx,t (65)

σ2
t = v1

(
σ2
t−1 − σ̄2

)
+ σ̄2 + σwεσ,t (66)

Time in this model is monthly. Investors are assumed to have Epstein—Zin preferences with

the time discount factor of β, an elasticity of intertemporal substitution of ρ−1 and risk

aversion of α.

B.2 Solution and simulation of the model

We solve the model using projection onto Chebyshev polynomials, which are solved through

collocation (see Judd (1999)). Both lifetime utility and also all asset prices are solved for

as 9th-order polynomials in the two state variables, xt and σ2
t . Expectations are calculated

using Gaussian quadrature with 15 points. All results involving simulations are calculated

based on 10,000 months of simulated data. We constrain σ2
t to be greater than 10−7 —setting

it to 10−7 if a shock drives it below that level.

B.3 Returns on zero-coupon consumption claims

We begin by examining returns on zero-coupon consumption claims. Define

PCn,t = EQ
t

[
Ct+n
Ct

]
(67)
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where Q is the pricing measure. PCn,t is thus the price of a claim to consumption on date

t+ n scaled by current consumption. The return is then

Rn,t+1 =
PCn−1,t+1Ct+1

PCn,tCt
(68)

Given that we have the pricing kernel from the model, it is straightforward to solve for PCn,t

recursively, starting from the boundary condition that PC0,t = 1.

As discussed in the main text, the approximation for the pricing kernel is

∆Et+1 logMt+1 = −ασtεc,t+1 +
(ρ− α) θ

1− φxθ
σtϕeεx,t+1 −

ρ− α
1− ρ k1

θ

1− v1θ
σwεσ2,t+1 (69)

where, as discussed in the derivation of the pricing kernel under stochastic volatility, k1 is

the coeffi cient in the expression

Etrw,t+1 = r̄ + ρxt + k1σ
2
t (70)

Our analysis does not depend on any particular assumption about the structure of the

expectation of the log pricing kernel. We therefore simply approximate

Et logMt+1 = m̄+m1σ
2
t (71)

That expression is also what is obtained in Bansal and Yaron’s (2004) solution. We find

m̄ and m1 as the values that best approximate our numerical solution (by minimizing the

squared difference between m̄+m1σ
2
t and the value in the numerical solution summed across

the collocation points).

Finally, we also need a value for the coeffi cient k1. As with Et logMt+1, we obtain k1 by

simply regressing the values of Etrw,t+1− ρxt from the numerical solution on a constant and

σ2
t .
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The pricing equation is then,

pcn,t = logEt exp

 m̄+m1σ
2
t − ρxt − ασtεc,t+1 + (ρ−α)θ

1−φxθ
σtϕeεx,t+1 − ρ−α

1−ρk1
θ

1−v1θσwεσ2,t+1

+pcn−1,t+1 + xt + σtεc,t+1


(72)

where pcn,t = logPCn,t. We then guess that prices can be expressed as

pcn,t = p̄+ px,nxt + pσ2,nσ
2
t (73)

This equation can be solved using standard methods to obtain

p̄n = log β − r̄f + p̄n−1 + pσ2,n−1 (1− v1) σ̄2 +
1

2

(
−ρ− α

1− ρ k1
θ

1− v1θ
+ pσ2,n−1

)2

σ2
w(74)

px,n = −ρ+ px,n−1φx + 1 (75)

pσ2,n = −r1 + pσ2,n−1v1 +
1

2
(1− α)2 +

1

2

(
(ρ− α) θ

1− φxθ
+ px,n−1

)2

ϕ2
e (76)

with the boundary conditions p̄0 = px,0 = pσ2,0 = 0.

We compare the risk premia implied by our approximation to those solved for numeri-

cally with the projection method by plotting Sharpe ratios across horizons calculated under

our linear approximation and the numerical approximation. Figure A2 plots steady-state

annualized Sharpe ratios (i.e. evaluated at σ2
t = σ̄2) for zero-coupon consumption claims

with maturities from 1 to 240 months in the numerical solution to the model and also our

log-linear approximation. The two series differ by less than 0.014 across all maturities. The

root mean squared error is 0.0051. The linear approximation thus provides a highly accurate

approximation to the risk premium for consumption claims and describes very well how the

risk premia vary with maturity.
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B.4 Hansen—Jagannathan distance

A standard measure of the distance between pricing kernels is the Hansen—Jagannathan (HJ;

1991) distance. For two pricing kernels,Mt+1 andM ′
t+1, the HJ distance is std

(
Mt+1 −M ′

t+1

)
.

It is straightforward to show that the HJ distance is equal to the maximal difference in Sharpe

ratios for an asset priced by the two kernels.

To examine how well the linearization approximates the numerically approximated pricing

kernel, we calculate the HJ distance for a range of calibrations of the long-run risk model

with different levels of persistence for expected consumption growth and volatility (φx and

v1). We hold ϕe and σ̄
2 fixed across the simulations, which means that the unconditional

standard deviation of xt rises as φx rises. So the simulations with higher φx not only test

robustness against higher persistence, they also test robustness against models where the

state variable xt moves farther away from its steady-state. Increasing dispersion in xt also

increases dispersion in the wealth/consumption ratio. So since our approximation is around

a constant wealth/consumption ratio, the simulations with more persistent xt provide a

tougher test of the approximation.

We set σw in each simulation so that the unconditional standard deviation of σ2
t is

unchanged from Bansal and Yaron’s (2004) original calibration. We make that choice to

ensure that σ2
t never falls below zero.

The table below reports the annualized HJ distance between the numerically approx-

imated pricing kernel and the one obtained from our linear approximation scaled by the

numerically derived HJ bound (the standard deviation of the pricing kernel divided by its

expectation). That is, denoting the projection and linearized pricing kernels as Mproj and

M linear, the relative HJ distance is
std(Mpro j−M linear)

std(Mpro j)
.

We report values of φx and v1 in terms of the implied half-lives for xt and σ2
t .

As we would expect, the magnitude of the errors increases with the persistence of the

state variables. The maximum relative HJ distance is 4 percent of the unconditional HJ
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bound. That is, across all possible assets in the economy, the linear approximation gets risk

premia wrong by up to 4 percent. However, for the majority of calibrations, the size of the

errors is relatively small. At Bansal and Yaron’s (2004) original calibration, the relative HJ

distance is only 2.7 percent. That is, risk premia deviate from their true value, for the most

extreme possible asset, by only 2.7 parts in 100. The results in the table thus imply that

for a broad range of calibrations, the HJ distance between our linear approximation and a

numerical solution is reasonably small in relative terms.

x half-life σ2 half-life Relative HJ distance

2.72 4.4 0.027

5 4.4 0.022

7.5 4.4 0.041

1.5 4.4 0.036

2.72 10 0.032

2.72 20 0.035

2.72 1.5 0.022

C Multiple priced variables and stochastic volatility

C.1 General result

The impulse response function in the multivariate case is denoted gk = JΓk, where gk is an

m × n matrix whose {m,n} element determines the effect of a shock to the nth element of

εt on the mth element of Etx̄t+k. The innovation to the SDF is then

∆Et+1mt+1 = −
( ∞∑
k=0

zkgk

)
εt+1 (77)

The price of risk for the jth element of ε is simply the jth element of
∑∞

k=0 zkgk.
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As before, we take the discrete Fourier transform of {gk}, defining

G̃ (ω) ≡
∞∑
k=0

e−iωkgk (78)

Following the same steps as in section 2 and defining G (ω) ≡ re
(
G̃ (ω)

)
, we arrive at

∞∑
k=0

zkgkbj =
1

2π

∫ π

−π
Z (ω) G (ω) bjdω (79)

=
1

2π

∫ π

−π

∑
m

Zm (ω) Gm,j (ω) dω (80)

where

Z (ω) ≡ z0 + 2
∞∑
k=1

zk cos (ωk) (81)

and where Zm (ω) denotes themth element of Z (ω) andGm,j (ω) denotes them, jth element

of G (ω). We thus have m different weighting functions, one for each of the priced variables.

The m weighting functions each multiply n different impulse transfer functions, Gm,j (ω).

The price of risk for shock j depends on how it affects the various priced variables at all

horizons.

C.2 Epstein—Zin with stochastic volatility

Using Result 2, we now extend the results on Epstein—Zin preferences to also allow for

stochastic volatility, similarly to Campbell et al. (2015) and Bansal and Yaron (2004). We

use the same log-normal and log-linear framework as above. The log stochastic discount

factor under Epstein—Zin preferences is,

mt+1 =
1− α
1− ρ log β − ρ1− α

1− ρ∆ct+1 +
ρ− α
1− ρ rw,t+1 (82)
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where rw,t+1 is the log return on a consumption claim on date t+ 1. Whereas we previously

assumed that consumption growth was log-normal and homoskedastic, we now allow for time-

varying volatility driven by a variable σ2
t . We assume that σ

2
t follows a linear, homoskedastic,

and stationary process. We assume that log consumption growth is driven by a VMA process

as in assumption 1, but that now the shocks εt have variances that scale linearly with σ2
t .

It is then straightforward to show that expected returns on a consumption claim will

follow

Etrw,t+1 = k0 + ρEt∆ct+1 + k1σ
2
t (83)

where k0 and k1 are constants that depend on the underlying process driving consumption

growth. Using the Campbell—Shiller approximation, we can then write the innovation to the

SDF as

∆Et+1mt+1 = −α∆ct+1 − (α− ρ) ∆Et+1

∞∑
j=1

θj∆ct+1+j (84)

−ρ− α
1− ρ∆Et+1θk1σ

2
t+1 −

ρ− α
1− ρ∆Et+1

∞∑
j=1

θjθk1σ
2
t+j+1 (85)

The weighting functions for consumption growth and volatility are now

ZEZ−SV
C (ω) = α + (α− ρ)

∞∑
j=1

θj2 cos (ωj) (86)

ZEZ−SV
σ2 (ω) = θk1

ρ− α
1− ρ

(
1 +

∞∑
j=1

θj2 cos (ωj)

)
(87)

C.3 Epstein—Zin with time-varying higher moments

This section derives the result from the main text on the general case for Epstein—Zin pref-

erences

We now guess that

Etrw,t+1 = k0 + ρEt∆ct+1 + k1x̃t (88)
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Recall that according to the Campbell—Shiller approximation,

∆Et+1rw,t+1 =

∞∑
j=0

θj∆Et+1∆ct+j+1 −
∞∑
j=1

θj∆Et+1rw,t+j+1 (89)

=
∞∑
j=0

θj∆Et+1∆ct+j+1 −
∞∑
j=1

θj∆Et+1 (ρ∆ct+j+1 + k1x̃t+j) (90)

=

∞∑
j=0

θj
∑
k

gk,jεk,t+1 −
∞∑
j=1

θj∆Et+1

(∑
k

(ρgk,j + k1g̃k,j−1) εk,t+1

)
(91)

The pricing equation for the wealth portfolio is then

0 = logEt exp

(
1− α
1− ρ log β − ρ1− α

1− ρ∆ct+1 +
1− α
1− ρ rw,t+1

)
(92)

=
1− α
1− ρ log β − ρ1− α

1− ρEt∆ct+1 +
1− α
1− ρEtrw,t+1 (93)

+
1

2
logEt exp

(
−ρ1− α

1− ρ∆Et+1∆ct+1 +
1− α
1− ρ∆Et+1rw,t+1

)
(94)

But given the assumption about how x̃t affects the distribution of εk,t+1, the final term above

is linear in x̃t, which confirms our guess for the form of the equation governing the expected

return on the wealth portfolio.

We then have for the innovation in the SDF

∆Et+1mt+1 = −ρ1− α
1− ρ∆Et+1∆ct+1 +

ρ− α
1− ρ∆Et+1rw,t+1 (95)

= −α
∑
k

gk,0εk,t+1 +
ρ− α
1− ρ

∞∑
j=1

θj

(∑
k

((1− ρ) gk,j − k1g̃k,j−1) εk,t+1

)
(96)

So then the price of risk for any shock depends now on both the effects of the shock on

consumption and also on the volatility process. If there were multiple volatility processes,

then we would have multiple extra priced variables.
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The time-domain weights for the consumption part are

z0,∆c = α (97)

zj,∆c = θj (α− ρ) for j > 0 (98)

for x̃, the weights are

zj,x̃ = k1
ρ− α
1− ρ θ

j (99)

These are then rotated into the frequency domain using the same techniques as above.

D Predictability of volatility in consumption growth

In this section we examine whether the variables in our VAR —consumption growth and

the two factors — are able to predict the volatility of future consumption growth. While

there is certainly evidence that consumption growth is heteroskedastic (one way to find such

evidence is to estimate an ARCH model on consumption growth) the key question for us is

whether the state variables we examine are related to volatility.

We examine two tests of whether volatility in consumption growth is predicted by the

lagged state variables: the Breusch—Pagan (1979) test and the Szroeter (1978) test. The

Breusch—Pagan test, when all of the lagged state variables (with lags from 1 to 3) are

allowed to potentially predict the variance of innovations, returns a p-value of 0.41. If

only the first lag of the state variables is included, the p-value is 0.71. In other words, there

is not significant evidence to reject the null that the volatility of consumption growth can

be predicted.

We also examined a Szroeter (1978) test, which tests whether any of the lagged state

variables individually predicts the variance of consumption growth. In that case, of the nine

p-values, the smallest is 0.15 (which does not correct for multiple testing).

The two tests thus suggest that the state variables in the VAR are unable to predict the
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volatility of future consumption growth. While it may be the case that consumption growth

volatility is predictable, the fact that these variables do not predict it means that their risk

premia must depend on their effect on the conditional mean of consumption growth, rather

than the conditional variance (ignoring the possibility that they predict higher moments like

disaster risk). So even if stochastic volatility is priced, the pricing of the three state variables

we examine will still reveal the pricing of fluctuations in expected consumption growth.

E Motivation for the bandpass basis from robust esti-

mation

The bandpass specification can be obtained in equilibrium when investors use a robust

estimation method for consumption dynamics. The full dynamic model of the economy is

obviously diffi cult to estimate and summarize. There are numerous state variables, and the

feedback between the various states and consumption itself may be complicated. Rather than

try to actually estimate and process a full model of the economy when pricing assets, investors

may summarize the effects of a particular shock on consumption growth by approximating

its impulse transfer function with a step function that highlights the average power of the

shock at meaningful ranges of frequencies. That way, rather than computing a full transfer

function, which has an infinite number of degrees of freedom, they retain only the finite

number of degrees of freedom required to define a step function.

Specifically, suppose that the true transfer functions are Gj, but that investors approxi-

mate them and price assets using step functions defined as

GStep
j (ω) =


1

2π/32

∫ 2π/32

0
Gj (κ) dκ for ω ∈ [0, 2π/32)

1
2π/8−2π/32

∫ 2π/8

2π/32
Gj (κ) dκ for ω ∈ [2π/32, 2π/8)

1
π−2π/8

∫ π
2π/8

Gj (κ) dκ for ω ∈ [2π/8, π]

(100)
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Since investors do not perceive any variation in the transfer functions GStep
j within the

three frequency windows, variation in the weighting function, Z, in those windows is irrel-

evant —all that matters is its average value. In other words, if investors approximate the

transfer function as a step function, then their behavior will be the same as if their weighting

function Z were a step function.

More formally, suppose the true weighting function is some arbitrary Z̃, but investors

measure risk using transfer functions that are step function approximations to the true

transfer function. We then have:

∫ π

0

Z̃ (ω)GStep
j (ω) dω =

∫ π

0

ZBP (ω; q)Gj (ω) dω (101)

where ZBP (ω; q) =


1

2π/32

∫ 2π/32

0
Z̃ (κ) dκ for ω ∈ [0, 2π/32)

1
2π/8−2π/32

∫ 2π/8

2π/32
Z̃ (κ) dκ for ω ∈ [2π/32, 2π/8)

1
π−2π/8

∫ π
2π/8

Z̃ (κ) dκ for ω ∈ [2π/8, π]

(102)

So a model where investors have a weighting function ZBP (ω; q) that is a step function is

observationally equivalent to an alternative where they approximate transfer functions Gj as

step functions. If the transfer functions that investors estimate are step functions, then risk

prices may be calculated using a step function for Z, regardless of its true shape. Moreover,

the steps in ZBP correspond exactly to average risk prices in the three frequency windows.

In the end, then, the bandpass specification yields estimates of average risk prices in

frequency windows and may be thought of as the result of investors estimating transfer

functions GStep
j . We show below that the step functions, GStep

j , are far easier for investors

to estimate than unrestricted functions, so we view the bandpass specification in the spirit

of Campbell and Mankiw’s (1989) estimation of the permanent income hypothesis in the

presence of rule-of-thumb consumers. Similar to them, our findings suggest that a rule of

thumb —in our case, the step function approximation —performs well.39

39We also note that approximating consumption dynamics in the frequency domain (rather than in the
time domain) is the standard way to compress information in many fields of science. As a practical example,
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F Details of the empirical analysis

F.1 Invariance of frequency-domain risk prices under rotations

Combining equations (51)—(54) from section (5.2.2), εt the risk prices for the shocks can be

written in the time domain as

p =
∞∑
k=0

qzkb1Φ
k (103)

where zk ≡
1

π

∫ π

0

cos (ωk) [Z1 (ω) , Z2 (ω) , Z3 (ω)]′ dω (104)

zk is the time-domain vector of basis functions. Note also that b1Φ
k is the vector of IRFs

of consumption growth to the reduced-form shocks εt. Given the definition of zk and using

Result 1, the matrix W from equation (54) can be written as
∑∞

k=0 zkb1Φ
k.

Now suppose we considered a set of rotated shocks ε̃t = Θεt for some rotation matrix Θ.

The estimated reduced-form risk prices for ε̃t, p̃, will then have the property

p̃ε̃t = pεt (105)

⇒ p̃Θ = p (106)

since the pricing kernel must be unchanged whether we examine the reduced-form innovations

or a rotation of them.40

Furthermore, note that the IRFs for the rotated shocks are simply b1Φ
kΘ−1 (since

∆Et+1∆ct+k+1 = b1Φ
kεt = b1Φ

kΘ−1ε̃t). The rotation matrix for ε̃t therefore becomes

W̃ =
∑∞

k=0 zkb1Φ
kΘ−1 = WΘ−1. So if we again take the reduced-form risk prices, p̃, and

standard music, image and video compression, and noise-reduction procedures —whose objective is precisely
to extract the most important components of each signal —use cosine transforms nearly identical to ours.
40That is, for the unrotated shocks, the asset pricing moments are E[exp (rit+1) − exp

(
rft+1

)
] =

pεt+1ri,t+1. For the rotated shocks, they are E[exp (rit+1) − exp
(
rft+1

)
] = p̃ε̃t+1ri,t+1. So the value of

the objective function is the same with the rotated shocks when p̃Θ = p.

63



multiply them by the rotation matrix W̃−1, we obtain

p̃W̃
−1

= p̃
(
WΘ−1

)−1
(107)

= p̃ΘW−1 (108)

= pW−1 (109)

So then whether we take the reduced form risk prices p and rotate them with W−1 or take

a set of rotated risk prices p̃ and rotate them with W̃−1, we obtain identical results.

F.2 Derivation of the asset pricing moment conditions

The derivation of the moments identifying the risk prices follows Campbell and Vuolteenaho

(2004). Given the assumption of lognormality of all shocks, we can write:

Etrit+1 − rft+1 +
1

2
σ2
it = −covt(mt+1, rit+1) (110)

where σ2
it = V art(rit+1). We then note that

covt(mt+1, rit+1) = covt(∆Et+1mt+1, rit+1) = Et(∆Et+1mt+1rit+1) = Et(−qWεt+1rit+1)

(111)

Which implies

Etrit+1 − rft+1 +
1

2
σ2
it = Et(qWεt+1rit+1) (112)

Since Etrit+1 − rft+1 + 1
2
σ2
it ≈ Et[exp (rit+1) − exp

(
rft+1

)
], and taking unconditional ex-

pectations, we obtain

E[exp (rit+1)− exp
(
rft+1

)
] ≈ E

[
qWεt+1rit+1

]
(113)
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F.3 Calculation of standard errors

The procedure in Hansen (2008) involves the following calculation. Define D to be the

Jacobian of the moment conditions with respect to the parameters [p′1, p
′
2]′ (where p1 =

vec
(
Φ̂
)
and p2 = q̂) partitioned in the two blocks of moments (where D12 = 0 since the

VAR moments do not depend on q̂):

D =

 D11 0

D21 D22


Denote the weighting matrix for the VAR moments as W1, and the weighting matrix for the

asset pricing moments W2. Finally, define

A11 = D′11W1

A22 = D′11W2

Then the covariance matrix of q̂ is estimated as,

var(q̂− q) =
1

T

{
(A22D22)−1A22

[
−D21(A11D11)−1A11, I

]}′
S
{

(A22D22)−1A22

[
−D21(A11D11)−1A11, I

]}
where the role played by the prespecified weighting matrices is clear from the terms A11 and

A22; the uncertainty about the parameters estimated in the first block comes through D11

and D21. The matrix S is the covariance matrix of the asset pricing moments.

G Additional robustness tests

This section discusses a range of perturbations of the main model to examine the robustness

of the main results.
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G.1 Bootstrapped t-statistics

We compute bootstrapped t-statistics following suggestions in Efron and Tibshirani (1994).

Specifically, in every bootstrap sample we calculate the t-statistic for each coeffi cient and

then use the simulated distribution of the t-statistics to construct p-values for the test of

whether the coeffi cients are different from zero.

Given a sample size of N , we take uniformly distributed draws from the set {1, 2, ..., N}

with replacement. The jth draw in bootstrap simulation i is denoted bij. The ith simulated

dataset is then the set of VAR residuals and test asset returns for observations
{
bij
}N
j=1
. To

construct the set of state variables, we draw an initial value of the state variables randomly

from the set of observations and then use the drawn innovations along with the point estimate

for the feedback matrix, Φ̂, to construct the full sample.

The estimation then proceeds on the simulated dataset exactly as it does on the true

dataset. For each simulated sample we form t-statistics for the difference between the boot-

strapped estimate of the coeffi cient and the point estimate. Suppose the empirically observed

t-statistic in the main estimate for some coeffi cient k is equal to t̂k > 0. Then the boot-

strapped p-value is twice the fraction of the simulated t-statistics at least as high as t̂k (for

a full description of the procedure, see Efron and Tibshirani, 1994)

The above procedure does not account for uncertainty in the estimation of the principal

components for the FAVAR since Bai and Ng (2006) show that estimation error in the

principal components is asymptotically negligible when
√
T/N → 0 (see also the discussion

in Ludvigson and Ng (2007)). But when considering the alternative specification in Table

A5 that uses a cross-section of only nine time series to estimate the factors, this sampling

uncertainty cannot be ignored.

Denote the variables used to calculate the principal components as xi,t for i ∈ {1, 2, ..., 9}.

We proceed to account for uncertainty in estimating the principal components by resampling

the T ×N panel of observed variables xi,t, and then re-estimating the factors in each sample,
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as in Ludvigson and Ng (2007). Denote the factors fj,t, and the estimated coeffi cients on

them b̂i,j. We then define the PC residuals as

êi,t ≡ xi,t − b̂1,tf1,t − b̂2,tf2,t (114)

As in Ludvigson and Ng (2007), we first estimate an AR(1) process on each individual PC

residual êi,t:

êi,t = ρiêi,t−1 + vi,t (115)

After the AR(1) specification is obtained and ρ̂i is estimated for each i, v̂it is resampled

(preserving the cross-sectional correlation across different i) in each bootstrap sample. We

then use the resampled AR(1) innovations to construct bootstrapped values of the individual

errors eit. Finally, those bootstrapped errors are added to b̂1,tf1,t + b̂2,tf2,t to yield a boot-

strapped sample of xit. Principal components are then constructed using the bootstrapped

sample of xit. The remainder of the bootstrap procedure in this case (i.e. for consumption

and returns) is otherwise identical to above.

G.2 Risk-sorted portfolios

The 25 Fama—French portfolios were originally constructed because their returns spanned a

number of observed anomalies in the cross-section of excess returns. We would not necessarily

expect them to have large spreads in their loadings on shocks to consumption growth at

different horizons. In this section we therefore construct portfolios that are specifically

designed to have a large spread in factor loadings.

In every quarter, we estimate factor loadings with respect to the low- and business-cycle

frequency shocks (we refrain from also sorting on the high-frequency shocks to keep the

portfolios relatively large and well diversified). The loadings are estimated on quarterly data

over the previous 10 years. Stocks are then split in to three equally sized groups according to
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their loadings on the factors, and we construct nine portfolios by crossing the two groupings

of loadings.

The low- and business-cycle frequency shocks are constructed using the bandpass speci-

fication. Specifically, we have

∆Et+1mt+1 = −qWεt+1 (116)

The rotated shocks are thus,

ut+1 = Wεt+1 (117)

And the low- and business-cycle frequency components are the first two elements of u.

G.3 Results

Table A5 reports a range of alternative estimates of the risk prices.

First, we estimate our baseline specification (column 1 of Table 3) using annual data

instead of quarterly data, motivated by recent evidence (e.g. Parker and Julliard 2005)

that the consumption CAPM works better when looking at more time-aggregated data.

The results with annual data are consistent with the ones obtained using quarterly data:

low-frequency fluctuations are significantly priced.41

The second pair of columns uses two lags in the VAR, rather than the three suggested

by cross-validation. The estimates are very close to those obtained with three lags, but they

are no longer statistically significant.

The third pair of columns uses the optimal weighting matrix for the moments identifying

the risk prices, which is derived by Hansen (2008). The optimal weighting matrix substan-

tially shrinks the standard errors, but the point estimates are only minimally changed from

our main results.
41We note that the shortest cycle we can identify with annual data is 2 years. Therefore, with annual data

we cannot identify the price of risk for our “higher-than-business-cycle”frequency window.
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Next, we calculate confidence intervals using the bootstrap procedure described above.

The low-frequency risk prices remain highly significant, while risk prices for other frequencies

are insignificant.

As described above, we also explore an alternative specification that extracts principal

components from nine macro-financial data series as instead of the 131 series of Jurado et

al. (2015): aggregate price/earnings and price/dividend ratios; the 10 year/3 month term

spread; the Aaa—Baa corporate yield spread (default spread); the small-stock value spread;

the unemployment rate minus its 8-year moving average; detrended short-term interest rate;

the three-month Treasury yield rate; and Lettau and Ludvigson’s (2001) cay. We com-

pute the standard errors via bootstrap, with and without incorporating uncertainty in the

estimation of the principal components.

Table A5 shows that even with the alternative method of constructing the factors for

the FAVAR, and even taking into account uncertainty in the estimation of the factors, we

continue to obtain highly significant coeffi cients on the low-frequency shocks to consumption.

The point estimates are somewhat larger than in our main analysis, but not qualitatively

different.

As a last extension, we attempt to estimate a version of the model with four instead of

three frequency windows. In particular, we split the low-frequency window into one covering

cycles lasting between 8 and 100 years and another covering cycles lasting more than 100

years. In order to estimate four risk prices we need four shocks, so we add a third principal

component from the 131 data series to the FAVAR. Table A5 shows that in this case we

obtain no results that are even close to significant and the standard errors are extremely

large compared to the main results.
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Figure 3. Characteristics of long-run risk model and contaminated version. In all panels, the
solid line is the long-run risk model and the dotted line is the contaminated model. The top left panel
plots autocorrelations of the consumption process. The top right panel plots IRFs for innovations to the
persistent component of consumption growth, xt. The bottom panels plot ITFs for innovations to the persistent
component of consumption growth, xt, with the right panel zooming in onto cycles longer than 5 years. The
bottom panels also plot the weighting function for Epstein–Zin preferences, ZEZ(!).
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Figure 4. Estimated impulse transfer functions for consumption VAR. The figure shows the impulse
transfer functions Gj(!) estimated from a FAVAR with consumption growth and two principal components
of a set of 131 macroeconomic variables. Each of the three panels shows the ITF for a different shock (note
that shocks are not orthogonalized). Shaded regions represent 95-percent confidence intervals. The vertical
line indicates cycles of 8 years, the break between business cycle frequencies (to the right of it) and “below-
business-cycle” frequencies (to the left of it).
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Figure 5. Estimated spectral weighting function. Estimated weighting function for consumption
growth as the priced variable using the utility specification (top row) and the bandpass specification (bottom
row). Risk prices are estimated using the 25 Fama–French portfolios. Light shaded areas denote 95-percent
confidence regions. Dark shaded areas are 1 standard deviation confidence intervals. The utility specification
uses a discount factor of 0.975 at the annual horizon. The x-axis gives the cycle length in years.
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Extremely low fr. Low frequencies Business Cycle High frequencies
α ρ=1/EIS θ >210 years (%) 8 to 210 years (%) 1.5 to 8 years (%) <1.5 years (%)

5 0.5 0.975 49.8 39.0 4.2 7.0 208.4  years

20 0.5 0.975 53.9 41.7 2.3 2.0 238.2  years

2.5 0.5 0.975 44.3 35.3 6.8 13.6 166.2  years

5 1 0.975 44.3 35.3 6.8 13.6 166.2  years

20 1 0.975 52.5 40.8 3.0 3.7 228.4  years

2.5 1 0.975 33.3 28.0 11.9 26.9 68.5  years

5 0.5 0.96 36.3 51.4 5.2 7.2 129.3  years

5 0.5 0.99 71.5 18.4 3.3 6.8 523.5  years

5 5 0.975 0.2 6.0 27.1 66.7 1.0  years

20 5 0.975 41.5 33.5 8.0 16.9 143.9  years

2.5 5 0.975 -54.8 -30.6 52.5 133.0 0.7  years

Extremely low fr. Low frequencies Business Cycle High frequencies
b >210 years (%) 8 to 210 years (%) 1.5 to 8 years (%) <1.5 years (%)

0.25 0.1 2.3 13.9 83.6 0.5  years

0.5 -0.1 -1.9 -1.4 103.4 0.6  years

0.75 -0.2 -5.0 -12.3 117.6 0.6  years

Epstein-Zin
Median cycle

Internal Habit
Median cycle

Table 1. Calibration of the weight of Epstein-Zin and internal habit preferences in different

frequency ranges. The table reports the fraction of the total weight (in percentage points) that different
calibrations of Epstein–Zin preferences (top panel) and internal habits (bottom panel) assign to various fre-
quency ranges. The table also reports the cycle length such that half of the pricing weight Z falls on either
side of it (the median cycle).
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Utility spec. Shock 1 Shock 2 Shock 3
Long-run 0.76 ** -0.61 ** 0.64 **

stderr (0.27) (0.25) (0.23)
t-stat 2.83 -2.45 2.85

Constant 1 0 0
stderr - - -
t-stat - - -

Habit 0.19 *** -0.02 0.18 ***
stderr (0.03) (0.05) (0.05)
t-stat 6.31 -0.45 3.53

Bandpass spec. Shock 1 Shock 2 Shock 3
Long-run 0.16 *** -0.06 * 0.08 **

stderr (0.03) (0.03) (0.03)
t-stat 5.77 -1.68 2.85

BC 0.29 *** 0.04 0.02
stderr (0.03) (0.03) (0.02)
t-stat 11.51 1.19 0.96

High freq 0.55 *** 0.02 -0.10 ***
stderr (0.02) (0.04) (0.03)
t-stat 27.00 0.41 -3.42

Table 2. Estimates of the rotation matrix W. The table reports the estimates of each element of
the rotation matrix W , for both the bandpass and the utility specifications. * indicates significance at the
10-percent level, ** the 5-percent level, and *** the 1-percent level.
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Estimate p-value Estimate p-value Estimate p-value Estimate p-value

Epstein–Zin 556 0.07 * 183 0.26 210 0.18 729 0.10 *
Constant -299 0.19 -226 0.05 * -254 0.04 ** -795 0.09 *
Habit 62 0.96 827 0.17 787 0.22 -968 0.45

Z_low 4837 0.03 ** 2375 0.06 * 2526 0.03 ** 4681 0.09 *
Z_BC -1486 0.61 439 0.77 336 0.83 -3117 0.16
Z_high -413 0.72 -804 0.15 -820 0.18 -396 0.62

p-value	(difference	test) 0.04 0.01 0.01 0.18

Z_low 4386 0.01 *** 2639 0.04 ** 2796 0.01 ** 5164 0.06 *
Z_BC	and	higher -754 0.05 ** -358 0.27 -407 0.15 -1545 0.01 **

p-value	(difference	test) 0.01 0.06 0.02 0.04

Portfolios used:
25 BE and BE/ME X X X X
49 Industries X X X
25 O.P. and Investment X X
9 Risk-sorted X

Table 3. Estimates of the Z(!) function. The table reports risk price estimates for the period
1962:1–2011:2 using quarterly data. The first set of rows presents the estimates of the coefficients for the
utility specification. The second set of rows shows the estimates of the coefficients of the 3-window band-
pass specification, i.e. the levels of the three steps (below-BC, BC, above-BC). The third set of rows shows
the estimates for a 2-window bandpass specification (cycles below and above 8 years). For each bandpass
specification, the table reports the p-value of a test for the difference in the coefficients. For the 3-window
specification, the test is a chi2 test of the null hypothesis that the three coefficients are the same. For the
2-window specification, the test is a t-test for the difference between the two coefficients. Each column reports
results using different set of portfolios, indicated at the bottom of the table: the 25 size and book-to-market
sorted portfolios, 49 industry portfolios, 25 portfolios sorted by operating profitability and investment, and 9
portfolios double-sorted by their exposure to the long-run and medium-run shocks (corresponding to the first
two risk prices reported in the table for each specification). * indicates significance at the 10-percent level, **
the 5-percent level, and *** the 1-percent level.
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Appendix Tables and Figures
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Figure A1. Estimated spectral weighting function, without VAR uncertainty. Estimated weighting
function for consumption growth as the priced variable using the utility specification (top row) and the
bandpass specification (bottom row). Risk prices are estimated using the 25 Fama–French portfolios. Light
shaded areas denote 95-percent confidence regions. Dark shaded areas are 95-percent confidence intervals
ignoring the estimation uncertainty of the VAR. The utility specification uses a discount factor of 0.975 at the
annual horizon. The x-axis gives the cycle length in years.
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Figure A2. Sharpe ratios in exactly solved and log-linearized versions of the long-run risk model.
The figure reports annualized Sharpe ratios for zero-coupon consumption claims of different maturity in the
long-run risk model (Case II of Bansal and Yaron (2004)). The thin line uses 9th order projection methods to
obtain the non-linear solution, while the thick line uses the log-linear approximation of the model as in Bansal
and Yaron (2004).

Cons. Price Cycle Cons. Price Cycle Cons. Price Cycle
Cons. 0.388 *** -0.0487 0.365 *** 0.0652 0.112 -0.122 0.201 ** 0.0581 -0.0389

(4.97) (-0.45) (3.55) (0.80) (0.81) (-1.21) (2.55) (0.50) (-0.44)

Price 0.142 ** 0.517 *** 0.21 *** 0.0141 0.111 -0.0223 0.205 *** -0.101 -0.0254
(2.29) (6.08) (2.58) (0.22) (1.02) (-0.28) (3.28) (-1.10) (-0.36)

Cycle 0.0740 -0.438 *** 0.265 *** 0.0814 -0.164 0.294 *** 0.0973 -0.0897 0.207 ***
(1.26) (-5.43) (3.43) (1.32) (-1.58) (3.88) (1.64) (-1.03) (3.09)

Lag 1 Lag 2 Lag 3

Table A1. VAR estimates. VAR results for consumption growth and the two macroeconomic factors,
with three lags. The sample is 1962:1–2011:2, quarterly. Standard errors are reported in brackets. * indicates
significance at the 10-percent level, ** the 5-percent level, and *** the 1-percent level.
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Fama-French 25 portfolios
Low-frequency loadings:

Small 72.7 (18.7) 67.7 (15.2) 54.9 (13.5) 52.0 (12.9) 56.6 (14.6) -16.1 (9.8)
2 66.7 (16.4) 52.7 (13.6) 50.3 (12.1) 50.8 (11.8) 56.6 (13.2) -10.1 (10.0)
3 63.3 (14.8) 50.1 (12.2) 42.5 (11.0) 42.3 (11.0) 47.1 (11.9) -16.2 (9.9)
4 55.0 (13.1) 47.0 (11.4) 42.4 (10.9) 40.1 (10.6) 47.8 (12.2) -7.2 (9.4)
Large 37.6 (10.5) 28.5 (9.6) 25.1 (8.9) 27.0 (9.3) 32.2 (10.4) -5.4 (8.4)
Difference -35.1 (12.9) -39.2 (10.4) -29.8 (9.4) -25.0 (8.7) -24.4 (10.0)

Business-cycle frequency loadings:

Small 39.8 (9.8) 35.9 (8.0) 28.4 (7.2) 26.7 (6.9) 30.5 (7.7) -9.3 (5.2)
2 34.3 (8.7) 26.2 (7.2) 24.9 (6.5) 24.5 (6.3) 28.6 (7.0) -5.7 (5.3)
3 31.2 (7.9) 24.5 (6.5) 20.4 (5.9) 20.7 (5.9) 21.5 (6.4) -9.7 (5.2)
4 26.9 (7.0) 22.7 (6.1) 21.3 (5.8) 18.6 (5.7) 23.9 (6.5) -3.0 (5.0)
Large 18.9 (5.6) 13.4 (5.1) 12.9 (4.7) 13.9 (4.9) 16.8 (5.5) -2.1 (4.4)
Difference -20.9 (6.8) -22.5 (5.5) -15.5 (5.0) -12.8 (4.6) -13.8 (5.3)

Difference

Growth 2 3 4 Value Difference

Growth 2 3 4 Value

Table A2. Factor loadings for test portfolios. Each cell of each table is a factor loading for one of the
portfolio returns with respect to either the low- or business-cycle frequency shock, for the 25 Fama–French
portfolios. The numbers in parentheses are standard errors for the estimated factor loadings and their differ-
ences.
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(1) p-value (2) p-value
Utility Spec.

Epstein–Zin -2209 0.55 -7044 0.84
Constant -156 0.60
Habit 6338 0.40
Epstein–Zin -2225 0.65 -18483 0.84
Constant -712 0.56 714 0.85
Habit 7564 0.60 20483 0.85

Bandpass Spec.
Z_low -40702 0.80 -4830 0.21
Z_BC 19017 0.76
Z_high -4247 0.67
Z_low -66535 0.83 -19223 0.14
Z_BC 33287 0.82 6793 0.26
Z_high -9286 0.82 -1095 0.61

Consumption

Volatility

Consumption

Volatility

Table A3. Model with stochastic volatility. The table estimates four models with stochastic volatility. In
the first column, we estimate the model using the utility specification for the weighting function of consumption
and volatility (top of the table), or using the bandpass specification for the weighting function of consumption
and volatility (bottom of the table). In each of the two models estimated in the first column, the 6 parameters of
the model (3 for the consumption weighting function and 3 for the volatility weighting function) are estimated
using a factor-aumented VAR that includes observable real consumption growth, realized volatility of the
S&P 500, and four principal components (macroeconomic factors) from Ludvigson and Ng (2007) and Jurado,
Ludvigson and Ng (2015). The second column repeats the estimation but only includes the long-run component
of the consumption weighting function, while leaving 3 parameters for the stochastic volatility weighting
function. In this case, a 4-variable VAR is used, that uses real consumption growth, realized volatility of the
S&P 500, and the first 2 principal components of the macroeconomic variables. * indicates significance at the
10-percent level, ** the 5-percent level, and *** the 1-percent level.
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Unrestricted p-value Restricted p-value
Utility Spec.

Epstein–Zin 671 0.08 * 333 0.15
Constant -161 0.55 -481 0.01 ***
Habit -261 0.87 455 0.59

Epstein–Zin -857 0.03 **
Constant -468 0.15 0.997 0.00 ***
Habit 2612 0.11

Bandpass Spec.
Z_low 5656 0.04 ** 5403 0.01 **
Z_BC -2034 0.56 -2545 0.38
Z_high -73 0.96 561 0.65

Z_low -5342 0.07 *
Z_BC 4911 0.15 -1.110 0.00 ***
Z_high -2110 0.16

Level

Interaction

Level

Interaction

Table A4. Model with time-varying risk premia. The table estimates four models with time-varying
risk premia, conditional on the surplus consumption ratio. In the first column, we estimate the model in an un-
restricted way, using lagged surplus consumption ratio as an instrument in the GMM estimation (standardized
to have zero mean and unit varinace). For each of the utility specification (top) and bandpass specification
(bottom), we report the coefficients on the three rotated shocks and those on the interaction between the
lagged instrument and the rotated shocks. Negative estimates of the interacted coefficients indicate higher
risk premia when the surplus consumption ratio is low, in the spirit of the Campbell-Cochrane (1999) habit
model. * indicates significance at the 10-percent level, ** the 5-percent level, and *** the 1-percent level.
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Annual Altern. Bootstrap
Data p-value Two lags p-value weighting p-value Results p-value

Epstein–Zin 873 0.00 ** 816 0.39 578 0.00 *** 556 0.01 ***
Constant 167 0.01 -331 0.09 * -348 0.00 *** -299 0.22
Habit -1129 0.05 -529 0.85 154 0.81 62 1.00

Z_low 839 0.02 ** 6998 0.38 5292 0.00 *** 4837 0.00 ***
Z_BC -363 0.23 -2821 0.70 -1498 0.30 -1486 0.37
Z_high 64 0.98 -551 0.39 -413 0.99

Altern. VAR Altern. VAR
No PC uncert. p-value PC uncert. p-value 4 Windows p-value

Epstein–Zin 1111 0.00 *** 1111 0.00 ***
Constant -443 0.12 -443 0.12 Z>100yr 627805 0.45
Habit 1232 0.33 1232 0.33 Z_low -66848 0.44

Z_BC 14673 0.36
Z_low 8638 0.00 *** 8638 0.00 *** Z_high -3834 0.35
Z_BC -3160 0.00 *** -3160 0.00 ***
Z_high 438 0.55 438 0.57

Table A5. Robustness. The table reports alternative specifications and robustness results for the estimates
of risk prices on different utility components (in the utility specification) or frequency groups (bandpass
specification). The first set of results estimates the results as in Column 1 of Table 3, but using annual data.
Since the minimum cycle discernible from annual data is 2 years, we cannot estimate the price of high-frequency
fluctuations in the bandpass basis. The second set shows the results using two rather than three lags for the
VAR. The third set computes standard errors using an alternative weighting matrix for the second stage of
the sequential GMM procedure; in this case, the weighting matrix for the estimation of the risk prices from
the cross section of portfolio returns depends not only on the moments of the asset pricing equations, but on
the entire set of moment conditions, including the VAR moment conditions (see Hansen (2008)). The fourth
set of results reports bootstrapped p-values, as described in the Appendix. The fifth set uses an alternative
dataset to compute the VAR factors: principal components of 9 variables (aggregate price/earnings and
price/dividend ratios; the 10 year/3 month term spread; the Aaa–Baa corporate yield spread (default spread);
the small-stock value spread; the unemployment rate minus its 8-year moving average; detrended short-term
interest rate; the three-month Treasury yield rate; and Lettau and Ludvigson’s (2001) cay). p-values are
computed via bootstrap, ignoring the sampling uncertainty in the construction of the principal components.
The sixth set uses the same variables as in the fifth set, but accounts for sampling uncertainty in the principal
component estimation. The seventh set estimates a bandpass specification replacing the low-frequency window
with two separate ones, one covering cycles 10 to 100 years, one covering all cycles above 100 years. * indicates
significance at the 10-percent level, ** the 5-percent level, and *** the 1-percent level.
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